The shale oil reservoir of the Lucaogou Formation in the Jimsar Sag has undergone tectonic movement, regional deposition and complex diagenesis processes. Therefore, various reservoir space types and complex combination patterns of pores have developed, resulting in an intricate pore throat structure. The complex pore throat structure brings great challenges to the classification and evaluation of reservoirs and the efficient development of shale oil. The methods of scanning electron microscopy, high-pressure mercury injection, low-temperature adsorption experiments and thin-slice analysis were used in this study. Mineral, petrology, pore throat structure and evolution process characteristics of the shale oil reservoir were analyzed and discussed qualitatively and quantitatively. Based on these studies, the evolution characteristics and formation mechanisms of different pore throat structures were revealed, and four progressions were made. The reservoir space of the Lucaogou Formation is mainly composed of residual intergranular pores, dissolved pores, intercrystalline pores and fractures. Four types of pore throat structures in the shale oil reservoir of the Lucaogou Formation were quantitatively characterized. Furthermore, the primary pore throat structure was controlled by a sedimentary environment. The pores and throats were reduced and blocked by compaction and cementation, which deteriorates the physical properties of the reservoirs. However, the dissolution of early carbonate, feldspar and tuffaceous minerals and a small amount of carbonate cements by organic acids are the key factors to improve the pore throat structure of the reservoirs. The genetic evolution model of pore throat structures in the shale oil reservoir of the Lucaogou Formation are divided into two types. The large-pore medium-fine throat and medium-pore medium-throat reservoirs are mainly located in the delta front-shallow lake facies and are characterized by the diagenetic assemblage types of weak compaction–weak carbonate cementation–strong dissolution, early medium compaction–medium calcite and dolomite cementation–weak dissolution. The medium-pore fine throats and fine-pore fine throats are mainly developed in shallow lakes and semi-deep lakes. They are characterized by the diagenetic assemblage type of strong compaction–strong calcite cementation–weak dissolution diagenesis. This study provides a comprehensive understanding of the pore throat structure and the genetic mechanism of a complex shale oil reservoir and benefits the exploration and development of shale oil.
The physical property heterogeneity of tight sandstones was mainly caused by complex alteration of various diagenesis combinations during burial process. However, diagenetic evolution of different diagenesis combinations which generally result in the strong difference and heterogeneity of physical property and pore structure is rarely well understood. The Middle Permian lower Shihezi Formation is one of the most important tight gas sandstone reservoirs in the Hangjinqi area of Ordos Basin, China. The reservoir heterogeneity of lower Shihezi Formation, which was caused by the differential diagenesis combination, is crucial to efficient exploration and development. Evolution mechanism of differential diagenesis combination and its effect on the reservoir quality in the tight lower Shihezi Formation sandstone in the Hangjinqi area of Ordos Basin was investigated by means of thin-section description, cathodoluminescence (CL) imaging, X-ray diffraction (XRD), scanning electron microscopy (SEM), and homogenization temperature of fluid inclusions. The lower Shihezi Formation sandstones can be divided into four diagenesis combination types according to the reservoir characteristics and diagenetic relationship. The main diagenetic sequence was mechanical compaction-chlorite rim-early pore-filling calcite cementation-dissolution-authigenic kaolinite-quartz cementation-late calcite cementation. Differential diagenesis combination was mainly controlled by the petrological characteristics, microfacies, and fault. Low content of rock fragment and high content of detrital quartz were beneficial to the compaction resistance and cementation. The moderate content of pore-filling calcite was conducive to pore space protection and feldspar dissolution. The faults control dissolution and differential diagenesis combination by influencing the migration of acid fluids. Moderate compaction-moderate cementation-moderate dissolution type (BBB type) and weak compaction-moderate cementation-strong dissolution type (CBA type) were in favour of high-quality reservoir development.
Shale gas accumulates in reservoirs that have favorable characteristics and associated organic geochemistry. The Wufeng-Longmaxi formation of Well Yucan-6 in Southeast Chongqing, SW China was used as a representative example to analyze the organic geochemical and reservoir characteristics of various shale intervals. Total organic carbon (TOC), vitrinite reflectance (Ro), rock pyrolysis, scanning electron microscopy (SEM), and nitrogen adsorption analyses were conducted, and a vertical coupling variation law was established. Results showed the following: the Wufeng-Longmaxi formation shale contains kerogen types I and II2; the average TOC value at the bottom of the formation is 3.04% (and the average value overall is 0.78%); the average Ro value is 1.94%; the organic matter is in a post mature thermal evolutionary stage; the shale minerals are mainly quartz and clay; and the pores are mainly intergranular, intragranular dissolved pores, organic matter pores and micro fractures. In addition, the average specific surface area (BET) of the shale is 5.171 m2/g; micropores account for 4.46% of the total volume; the specific surface area reaches 14.6%; and mesopores and macropores are the main pore spaces. There is a positive correlation between TOC and the quartz content of Wufeng-Longmaxi shale, and porosity is positively correlated with the clay mineral content. It is known that organic pores and the specific area develop more favorably when the clay mineral content is higher because the adsorption capacity is enhanced. In addition, as shale with a high clay mineral content and high TOC content promotes the formation of a large number of nanopores, it has a strong adsorption capacity. Therefore, the most favorable interval for shale gas exploration and development in this well is the shale that has a high TOC content, high clay mineral content, and a suitable quartz content. The findings of this study can help to better identify shale reservoirs and predict the sweet point in shale gas exploration and development.
China shale oil, which is preserved in lacustrine shale with strong heterogeneity and relatively low maturity, has been a research hotspot of unconventional resources. However, controlling factors of shale oil enrichment and resource potential evaluation restricted efficient exploration and development of lacustrine shale oil. On the basis of well logging data, TOC content, Rock-Eval pyrolysis values, thermal maturity, 100 oil saturation data, and pressure coefficient, the core observation, X-ray diffraction analysis, physical property analysis, scanning electron microscopy, CT scan, well logging interpretation, and volumetric genesis method depending on three-dimensional geological modeling were used to determine enrichment factors and evaluate the resource potential of Qingshankou Formation shale oil in the Southern Songliao Basin. Shale oil was mainly enriched in the semideep and deep lake shale of K2qn1, with the high capacity of hydrocarbon generation and favorable petrological and mineralogical characteristics, pore space characteristics, and physical properties in the low structural part of the Southern Songliao Basin. The three-dimensional geological resource model of Qingshankou Formation lacustrine shale oil was determined by the key parameters (Ro, TOC, and S 1 ) of shale oil in the favorable zone of the Southern Songliao Basin, northeast China. The geological resource of shale oil, which was calculated by two grid computing methods ( F 1 and F 2 ), was, respectively, 1.713 × 10 12 kg and 1.654 × 10 12 kg . The great shale oil resource indicates a promising future in the exploration and development of Qingshankou Formation shale oil of the Southern Songliao Basin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.