Accumulating evidence suggests that the gut microbiota is an important factor in mediating the development of obesity-related metabolic disorders, including type 2 diabetes. Metformin and berberine, two clinically effective drugs for treating diabetes, have recently been shown to exert their actions through modulating the gut microbiota. In this study, we demonstrated that metformin and berberine similarly shifted the overall structure of the gut microbiota in rats. Both drugs showed reverting effects on the high-fat diet-induced structural changes of gut microbiota. The diversity of gut microbiota was significantly reduced by both berberine- and metformin-treatments. Nearest shrunken centroids analysis identified 134 operational taxonomic units (OTUs) responding to the treatments, which showed close associations with the changes of obese phenotypes. Sixty out of the 134 OTUs were decreased by both drugs, while those belonging to putative short-chain fatty acids (SCFA)-producing bacteria, including Allobaculum, Bacteriodes, Blautia, Butyricoccus, and Phascolarctobacterium, were markedly increased by both berberine and, to a lesser extent, metformin. Taken together, our findings suggest that berberine and metformin showed similarity in modulating the gut microbiota, including the enrichment of SCFA-producing bacteria and reduction of microbial diversity, which may contribute to their beneficial effects to the host.
Slow vascularization rate is considered one of the main drawbacks of scaffolds used in wound healing. Several efforts, including cellular and acellular technologies, have been made to induce vascular growth in scaffolds. However, thus far, there is no established technology for inducing vascular growth. The aim of this study was to promote the vascularization capacities of scaffolds by seeding adipose-derived stem cells (ADSCs) on them and to compare the vascularization capacities of different scaffolds seeded with ADSCs. Two kinds of extracellular matrix scaffolds (small intestinal submucosa [SIS] and acellular dermal matrix [ADM]) and a kind of composite scaffold (collagen-chondroitin sulfate-hyaluronic acid [Co-CS-HA]) were selected. Subcutaneous implantation analysis showed that the vascularization capacity of SIS and ADM was greater than that of Co-CS-HA. ADSCs seeded in SIS and ADM secreted greater amounts of vascular endothelial growth factor than those seeded in Co-CS-HA. In a murine skin injury model, ADSC-seeded scaffolds enhanced the angiogenesis and wound healing rate compared with the nonseeded scaffolds. Moreover, ADSC-SIS and ADSC-ADM had greater vascularization capacity than that of ADSC-Co-CS-HA. Taken together, these results suggest that ADSCs could be used as a cell source to promote the vascularization capacities of scaffolds. The vascularization capacities of ADSC-seeded scaffolds were influenced by both the vascularization capacities of the scaffolds themselves and their effects on the angiogenic potential of ADSCs; the combination of extracellular matrix scaffolds and ADSCs exhibited synergistic angiogenesis promoting effects.
Previous studies have discovered a lot of immune-related genes responding to white spot syndrome virus (WSSV) infection in crustacean. However, little information is available in relation to underlying mechanisms of host responses during the WSSV acute infection stage in naturally infected shrimp. In this study, we employed next-generation sequencing and bioinformatic techniques to observe the transcriptome differences of the shrimp between latent infection stage and acute infection stage. A total of 64,188,426 Illumina reads, including 31,685,758 reads from the latent infection group and 32,502,668 reads from the acute infection group, were generated and assembled into 46,676 unigenes (mean length: 676 bp; range: 200–15,094 bp). Approximately 24,000 peptides were predicted and classified based on homology searches, gene ontology, clusters of orthologous groups of proteins, and biological pathway mapping. Among which, 805 differentially expressed genes were identified and categorized into 11 groups based on their possible function. Genes in the Toll and IMD pathways, the Ras-activated endocytosis process, the RNA interference pathway, anti-lipopolysaccharide factors and many other genes, were found to be activated in shrimp from latent infection stage to acute infection stage. The anti-bacterially proPO-activating cascade was firstly uncovered to be probably participated in antiviral process. These genes contain not only members playing function in host defense against WSSV, but also genes utilized by WSSV for its rapid proliferation. In addition, the transcriptome data provides detail information for identifying novel genes in absence of the genome database of shrimp.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.