CD8+ T cells have a central role in antitumour immunity, but their activity is suppressed in the tumour microenvironment1–4. Reactivating the cytotoxicity of CD8+ T cells is of great clinical interest in cancer immunotherapy. Here we report a new mechanism by which the antitumour response of mouse CD8+ T cells can be potentiated by modulating cholesterol metabolism. Inhibiting cholesterol esterification in T cells by genetic ablation or pharmacological inhibition of ACAT1, a key cholesterol esterification enzyme5, led to potentiated effector function and enhanced proliferation of CD8+ but not CD4+ T cells. This is due to the increase in the plasma membrane cholesterol level of CD8+ T cells, which causes enhanced T-cell receptor clustering and signalling as well as more efficient formation of the immunological synapse. ACAT1-deficient CD8+ T cells were better than wild-type CD8+ T cells at controlling melanoma growth and metastasis in mice. We used the ACAT inhibitor avasimibe, which was previously tested in clinical trials for treating atherosclerosis and showed a good human safety profile6,7, to treat melanoma in mice and observed a good antitumour effect. A combined therapy of avasimibe plus an anti-PD-1 antibody showed better efficacy than monotherapies in controlling tumour progression. ACAT1, an established target for atherosclerosis, is therefore also a potential target for cancer immunotherapy.
High salt is positively associated with the risk of many diseases. However, little is known about the mechanisms. Here we showed that high salt increased proinflammatory molecules, while decreased anti-inflammatory and proendocytic molecules in both human and mouse macrophages. High salt also potentiated lipopolysaccharide-induced macrophage activation and suppressed interleukin 4-induced macrophage activation. High salt induced the proinflammatory aspects by activating p38/cFos and/or Erk1/2/cFos pathways, while inhibited the anti-inflammatory and proendocytic aspects by Erk1/2/signal transducer and activator of transcription 6 pathway. Consistent with the in vitro results, high-salt diet increased proinflammatory gene expression of mouse alveolar macrophages. In mouse models of acute lung injury, high-salt diet aggravated lipopolysaccharide-induced pulmonary macrophage activation and inflammation in lungs. These results identify a novel macrophage activation state, M(Na), and high salt as a potential environmental risk factor for lung inflammation through the induction of M(Na).
ObjectiveMethionine metabolism is involved in a myriad of cellular functions, including methylation reactions and redox maintenance. Nevertheless, it remains unclear whether methionine metabolism, RNA methylation and antitumour immunity are molecularly intertwined.DesignThe antitumour immunity effect of methionine-restricted diet (MRD) feeding was assessed in murine models. The mechanisms of methionine and YTH domain-containing family protein 1 (YTHDF1) in tumour immune escape were determined in vitro and in vivo. The synergistic effects of MRD or YTHDF1 depletion with PD-1 blockade were also investigated.ResultsWe found that dietary methionine restriction reduced tumour growth and enhanced antitumour immunity by increasing the number and cytotoxicity of tumour-infiltrating CD8+ T cells in different mouse models. Mechanistically, the S-adenosylmethionine derived from methionine metabolism promoted the N6-methyladenosine (m6A) methylation and translation of immune checkpoints, including PD-L1 and V-domain Ig suppressor of T cell activation (VISTA), in tumour cells. Furthermore, MRD or m6A-specific binding protein YTHDF1 depletion inhibited tumour growth by restoring the infiltration of CD8+ T cells, and synergised with PD-1 blockade for better tumour control. Clinically, YTHDF1 expression correlated with poor prognosis and immunotherapy outcomes for cancer patients.ConclusionsMethionine and YTHDF1 play a critical role in anticancer immunity through regulating the functions of T cells. Targeting methionine metabolism or YTHDF1 could be a potential new strategy for cancer immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.