Chemokine receptor 7 (CCR7) has emerged as an inducer of invasion, migration, and epithelial-mesenchymal transition (EMT) in cancer. In this research, human malignant glioma cells were stimulated with transforming growth factor beta 1 (TGF-β1) and siCCR7. The data show that CCR7 mediates TGF-β1-induced EMT, migration, and invasion in U251 and U87 cells and that these effects of TGF-β1 were reversed by treatment with siCCR7 or a CCR7 neutralizing antibody. Importantly, the TGF-β1-mediated increase in nuclear factor kappaB (NF-κB) activity in human glioma cells was reduced by treatment with siCCR7 or a CCR7 neutralizing antibody. Furthermore, CCR7 was shown to mediate TGF-β1-induced glioma cancer cell migration by activating matrix metalloproteinase 2 (MMP2)/9. Our results indicate that CCR7 mediates TGF-β1-induced MMP2/9 expression through NF-κB signaling, thus facilitating glioma cell migration, invasion, and EMT, all of which progressively increase with glioblastoma progression. These findings indicate that CCR7 is a potential therapeutic target for malignant glioma.
The traditional three-dimensional measurement system based on linear-structured light usually involves mechanical scanning platforms to perform the linear scanning, which make the structure of the system huge and complicated. The emergence of the galvanometric laser scanner solves the problem by using a galvanometer to replace the mechanical scanning platform. The employment of the galvanometer can improve the speed of scanning and simplify the structure of the system. However, there are few approaches available to calibrate this kind of system. In this paper, a high-precision calibration method is proposed to calibrate the galvanometric laser scanning three-dimensional measurement system. A precision motorized linear stage and a planar target are applied in this method. The planar target is used for the camera calibration based on Zhang's method and the precision motorized linear stage for the laser plane calibration. The validity and accuracy of this method are evaluated by scanning the standard component. The experiments conducted suggest that the proposed method is valid and accurate for the calibration of the galvanometric laser scanning system.
The objective of this research was to investigate the mechanism of canal switching in benign paroxysmal positional vertigo through a virtual simulation model. Using Unity 3D software and a built-in NVIDIA Physx physics engine, the virtual simulation software is developed using a browser-server architecture, and different models are imported. Based on the benign paroxysmal positional vertigo virtual simulation model, we constructed five different virtual reality scenes of diagnosis and treatment, set otoliths in different positions of the semicircular canals, and analyzed the effects of diagnostic and therapeutic procedures on otolith location. Through the analysis of otolith movement in five virtual scenes, we found that canal switching may be caused by otoliths in the utricle entering the semicircular canal in the supine position. Then, we used different methods to reposition the otolith, improved the repositioning maneuver, and explored in depth the mechanism of the canal switching. The results showed that the main reason for the canal switch is that in the supine position, the otolith in the utricle enters the semicircular canal. The repositioning maneuvers, including the Epley maneuver and Barbecue maneuver, will not directly lead to the canal switch in the ipsilateral inner ear. The supine roll maneuver leads to the otolith in the utricle entering the posterior or lateral semicircular canal, which is the most likely mechanism for canal switching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.