In this paper, we propose a progressive reliable points growing matching scheme to estimate the depth from the speckle projection image. First a self-adapting binarization is introduced to reduce the influence of inconsistent intensity. Then we apply local window-based correlation matching to get the initial disparity map. After the initialization, we formulate a progressive updating scheme to update the disparity estimation. There are two main steps in each round of updation. At first new reliable points are progressively selected based on three aspects of criterion including matching degree, confidence, and left-right consistency; then prediction-based growing matching is adopted to recalculate the disparity map from the reliable points. Finally, the more accurate depth map can be obtained by subpixel interpolation and transformation. The experimental results well demonstrate the effectiveness and low computational cost of our scheme.
SUMMARYThis paper addresses stereo matching under scenarios of smooth region and obviously slant plane. We explore the flexible handling of color disparity, spatial relation and the reliability of matching pixels in support windows. Building upon these key ingredients, a robust stereo matching algorithm using local plane fitting by Confidence-based Support Window (CSW) is presented. For each CSW, only these pixels with high confidence are employed to estimate optimal disparity plane. Considering that RANSAC has shown to be robust in suppressing the disturbance resulting from outliers, we employ it to solve local plane fitting problem. Compared with the state of the art local methods in the computer vision community, our approach achieves the better performance and time efficiency on the Middlebury benchmark. key words: stereo matching, local based, local plane fitting, RANSAC
This paper proposes a novel high-accuracy stereo matching scheme based on adaptive ground control points (AdaptGCP). Different from traditional fixed GCP-based methods, we consider color dissimilarity, spatial relation, and the pixel-matching reliability to select GCP adaptively in each local support window. To minimize the global energy, we propose a practical solution, named as alternating updating scheme of disparity and confidence map, which can effectively eliminate the redundant and interfering information of unreliable pixels. The disparity values of those unreliable pixels are reassigned with the information provided by local plane model, which is fitted with GCPs. Then, the confidence map is updated according to the disparity reassignment and the left-right consistency. Finally, the disparity map is refined by multistep filers. Quantitative evaluations demonstrate the effectiveness of our AdaptGCP scheme for regularizing the ill-posed matching problem. The top ranks on Middlebury benchmark with different error thresholds show that our algorithm achieves the state-of-the-art performance among the latest stereo matching algorithms. This paper provides a new insight toward high-accuracy stereo matching.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.