Smart cities make better use of space and have less traffic, cleaner air, and more efficient municipal services, improving people’s quality of life. The vast number of vehicles continually seeking to reach crowded spots in smart cities complicates acquiring a public parking space. It presents challenges for both traffic and residents. With such vast populations, road congestion is a serious challenge. It wastes vital resources such as fuel, money, and, most importantly, time. Finding a good location to park is one of the reasons for traffic congestion on the highway. This paper proposes a deep learning-based economic forecasting model (DL-EFM) for long-term economic growth in smart cities. Traffic management is vital for cities to guarantee that people and products can move freely across the city. Many automobiles attempting to reach crowded areas in smart cities make getting a public parking place difficult. It is inconvenient for both drivers and residents. Different traffic management authorities have implemented an artificial neural network (ANN) to resolve the issue, and modern vehicle systems have been coupled with intelligent parking solutions. The experimental outcome of the deep learning-based economic forecasting model improves traffic estimation, accuracy prediction in traffic flow, traffic management, and smart parking when compared to existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.