In motor imagery-based brain-computer interfaces (BCIs), the spatial covariance features of electroencephalography (EEG) signals that lie on Riemannian manifolds are used to enhance the classification performance of motor imagery BCIs. However, the problem of subject-specific bandpass frequency selection frequently arises in Riemannian manifold-based methods. In this study, we propose a multiple Riemannian graph fusion (MRGF) model to optimize the subject-specific frequency band for a Riemannian manifold. After constructing multiple Riemannian graphs corresponding to multiple bandpass frequency bands, graph embedding based on bilinear mapping and graph fusion based on mutual information were applied to simultaneously extract the spatial and spectral features of the EEG signals from Riemannian graphs. Furthermore, with a support vector machine (SVM) classifier performed on learned features, we obtained an efficient algorithm, which achieves higher classification performance on various datasets, such as BCI competition IIa and in-house BCI datasets. The proposed methods can also be used in other classification problems with sample data in the form of covariance matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.