Cu/SiO 2 catalysts were prepared by separate impregnation and deposition precipitation methods for the hydrogenation of dimethyl oxalate (DMO) to ethylene glycol (EG). XRD, TEM, H 2 -TPR, SEM, EDS and N 2 physisorption were performed to characterize the textural and structural properties of the catalysts. The results showed that Cu particles from the deposition precipitation preparation were homogeneously dispersed on the support and their sizes were found to be smaller than those from the impregnation method and the catalyst produced by the deposition precipitation method gave higher EG yields at lower reaction temperatures and lower H 2 /DMO mole ratio.
A highly efficient Agrobacterium-mediated transformation method is needed for the molecular study of model tree species such as hybrid poplar 84K (Populus alba × P. glandulosa cv. ‘84K’). In this study, we report a callus-based transformation method that exhibits high efficiency and reproducibility. The optimized callus induction medium (CIM1) induced the development of calli from leaves with high efficiency, and multiple shoots were induced from calli growing on the optimized shoot induction medium (SIM1). Factors affecting the transformation frequency of calli were optimized as follows: Agrobacterium concentration sets at an OD600 of 0.6, Agrobacterium infective suspension with an acetosyringone (AS) concentration of 100 µM, infection time of 15 min, cocultivation duration of 2 days and precultivation duration of 6 days. Using this method, transgenic plants are obtained within approximately 2 months with a transformation frequency greater than 50%. Polymerase chain reaction (PCR), reverse transcription-PCR (RT-PCR) and β-galactosidase (GUS) histochemical staining analyses confirmed the successful generation of stable transformants. Additionally, the calli from leaves were subcultured and used to obtain new explants; the high transformation efficiency was still maintained in subcultured calli after 6 cycles. This method provides a reference for developing effective transformation protocols for other poplar species.
The plant leaf, the main organ of photosynthesis, is an important regulator of growth. To explore the difference between leaf size of Populusdeltoides ‘Danhong’ (Pd) and Populus simonii ‘Tongliao1’ (Ps), we investigated the leaf length, leaf width, leaf thickness, leaf area, leaf mass per area (LMA), and cell size of leaves from two genotypes and profiled the transcriptome-wide gene expression patterns through RNA sequencing. Our results show that the leaf area of Pd was significantly larger than that of Ps, but the epidermal cell area was significantly smaller than that of Ps. The difference of leaf size was caused by cell numbers. Transcriptome analysis also revealed that genes related to chromosome replication and DNA repair were highly expressed in Pd, while genes such as the EXPANSIN (EXPA) family which promoted cell expansion were highly expressed in Ps. Further, we revealed that the growth-regulating factors (GRFs) played a key role in the difference of leaf size between two genotypes through regulation of cell proliferation. These data provide a valuable resource for understanding the leaf development of the Populus genus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.