BackgroundSmall non-coding RNAs (sRNAs) facilitate host-microbe interactions. They have a central function in the post-transcriptional regulation during pathogenic lifestyles. Hfq, an RNA-binding protein that many sRNAs act in conjunction with, is required for Y. pestis pathogenesis. However, information on how Yersinia pestis modulates the expression of sRNAs during infection is largely unknown.Methodology and Principal FindingsWe used RNA-seq technology to identify the sRNA candidates expressed from Y. pestis grown in
vitro and in the infected lungs of mice. A total of 104 sRNAs were found, including 26 previously annotated sRNAs, by searching against the Rfam database with 78 novel sRNA candidates. Approximately 89% (93/104) of these sRNAs from Y. pestis are shared with its ancestor Y. pseudotuberculosis. Ninety-seven percent of these sRNAs (101/104) are shared among more than 80 sequenced genomes of 135 Y. pestis strains. These 78 novel sRNAs include 62 intergenic and 16 antisense sRNAs. Fourteen sRNAs were selected for verification by independent Northern blot analysis. Results showed that nine selected sRNA transcripts were Hfq-dependent. Interestingly, three novel sRNAs were identified as new members of the transcription factor CRP regulon. Semi-quantitative analysis revealed that Y. pestis from the infected lungs induced the expressions of six sRNAs including RyhB1, RyhB2, CyaR/RyeE, 6S RNA, RybB and sR039 and repressed the expressions of four sRNAs, including CsrB, CsrC, 4.5S RNA and sR027.Conclusions and SignificanceThis study is the first attempt to subject RNA from Y. pestis-infected samples to direct high-throughput sequencing. Many novel sRNAs were identified and the expression patterns of relevant sRNAs in Y. pestis during in
vitro growth and in
vivo infection were revealed. The annotated sRNAs accounted for the most abundant sRNAs either expressed in bacteria grown in
vitro or differentially expressed in the infected lungs. These findings suggested these sRNAs may have important functions in Y. pestis physiology or pathogenesis.
Aims: sRNA regulation is supposedly involved in the stress response of a pathogen during infection. Yersinia pestis, the etiologic agent of plague, must encounter temperature and microenvironment changes, given its lifestyle. Here, we used the cDNA cloning approach to discover full-length sRNA candidates that are highly expressed in Y. pestis under five different growth conditions. Materials & methods: The cDNA cloning approach was improved by combining the traditional cDNA library construction with the prevalent rapid amplification of cDNA ends and RNA size selection techniques. Results: In total, 43 RNA species, including six previously annotated sRNAs, were identified. Of these, 25 sRNAs were encoded on the antisense strand of the annotated genes. Interestingly, two of these sRNAs were found on the complementary strand of noncoding RNAs. In addition, eight novel sRNAs encoded in the intergenic regions were also revealed. Ten sRNA candidates chosen for the northern blot ana lysis were successfully detected. Analysis of the expression patterns of 29 candidate sRNAs showed that 24 sRNAs are highly abundant in Y. pestis upon entry into the stationary growth phase. Conclusion: Our preliminary attempt at screening the novel sRNA candidates will lay the foundation for understanding the roles of sRNAs in Y. pestis physiology and pathogenesis. Keywords n cDNA library construction n small RNA n Yersinia pestis
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.