In nature, many biological organisms possess a unique osmoregulation feature that enables them to survive in environments of different salinity, which is called euryhaline characteristics (e.g., salmon that can survive in freshwater and seawater). Drawing inspiration from these salinity‐tolerant organisms, here a strategy that integrates two polymer chain segments with different salinity tolerances is reported to produce a euryhaline hydrogel with stable water retention, constant swelling properties, superoleophobicity, and low‐adhesion to oil in aqueous environments over a wide range of salinity. The formation of internal dynamic complementary crosslinks is a key structural factor of the euryhaline attributes. The euryhaline hydrogel‐coated meshes can be successfully utilized in various oil/aqueous phase separation in a wide range of salinity. Furthermore, by creating a double network with dynamic bonds, superior euryhaline hydrogel with unique salinity‐enhanced mechanical strength can be obtained. It is anticipated that the euryhaline hydrogel will have broad application prospects in complex and variable ionic environments.
As a new concept of the device, a hybrid energy harvester integrated with a water droplet triboelectric nanogenerator (WD-TENG) and a solar cell has been reported to convert raindrop energy and solar energy into electricity. However, organic triboelectric layers are usually utilized in previous studies that might be decomposed under long-term UV irradiation, resulting in degradation of the hybrid energy harvester. In this work, a fully inorganic hybrid energy harvester is demonstrated. Superhydrophobic SiO2 film is introduced to the system as both the triboelectric layer of the WD-TENG and the anti-reflective layer of the solar cell, which could increase the power conversion efficiency (PCE) of the solar cell from 15.17% to 15.71%. Meanwhile, WD-TENG with the SiO2 triboelectric layer could collect energies from rain droplets. This superhydrophobic SiO2 film could effectively reduce the dependence of the tilt angle for the WD-TENG and bring up self-cleaning performance for the hybrid energy harvester. Moreover, this fully inorganic architecture could enhance the stability of the hybrid energy harvester, making it a promising strategy in practical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.