Chromatin profiling has emerged as a powerful means for genome annotation and detection of regulatory activity. Here we map nine chromatin marks across nine cell types to systematically characterize regulatory elements, their cell type-specificities, and their functional interactions. Focusing on cell type-specific patterns of promoters and enhancers, we define multi-cell activity profiles for chromatin state, gene expression, regulatory motif enrichment, and regulator expression. We use correlations between these profiles to link enhancers to putative target genes, and predict the cell type-specific activators and repressors that modulate them. The resulting annotations and regulatory predictions have implications for interpreting genome-wide association studies. Top-scoring disease SNPs are frequently positioned within enhancer elements specifically active in relevant cell types, and in some cases affect a motif instance for a predicted regulator, thus proposing a mechanism for the association. Our study presents a general framework for deciphering cis-regulatory connections and their roles in disease.
DNA methylation is essential for normal development [1][2][3] and has been implicated in many pathologies including cancer 4,5 . Our knowledge about the genome-wide distribution of DNA methylation, how it changes during cellular differentiation and how it relates to histone methylation and other chromatin modifications in mammals remains limited. Here we report the generation and analysis of genome-scale DNA methylation profiles at nucleotide resolution in mammalian cells. Using high-throughput reduced representation bisulphite sequencing 6 and single-molecule-based sequencing, we generated DNA methylation maps covering most CpG islands, and a representative sampling of conserved non-coding elements, transposons and other genomic features, for mouse embryonic stem cells, embryonic-stem-cell-derived and primary neural cells, and eight other primary tissues. Several key findings emerge from the data. First, DNA methylation patterns are better correlated with histone methylation patterns than with the underlying genome sequence context. Second, methylation of CpGs are dynamic epigenetic marks that undergo extensive changes during cellular differentiation, particularly in regulatory regions outside of core promoters. Third, analysis of embryonic-stem-cell-derived and primary cells reveals that 'weak' CpG islands associated with a specific set of developmentally regulated genes undergo aberrant hypermethylation during
Somatic cells can be reprogrammed to a pluripotent state through the ectopic expression of defined transcription factors. Understanding the mechanism and kinetics of this transformation may shed light on the nature of developmental potency and suggest strategies with improved efficiency or safety. Here we report an integrative genomic analysis of reprogramming of mouse fibroblasts and B lymphocytes. Lineage-committed cells show a complex response to the ectopic expression involving induction of genes downstream of individual reprogramming factors. Fully reprogrammed cells show gene expression and epigenetic states that are highly similar to embryonic stem cells. In contrast, stable partially reprogrammed cell lines show reactivation of a distinctive subset of stem-cell-related genes, incomplete repression of lineage-specifying transcription factors, and DNA hypermethylation at pluripotency-related loci. These observations suggest that some cells may become trapped in partially reprogrammed states owing to incomplete repression of transcription factors, and that DNA de-methylation is an inefficient step in the transition to pluripotency. We demonstrate that RNA inhibition of transcription factors can facilitate reprogramming, and that treatment with DNA methyltransferase inhibitors can improve the overall efficiency of the reprogramming process.
The mission of the Encyclopedia of DNA Elements (ENCODE) Project is to enable the scientific and medical communities to interpret the human genome sequence and apply it to understand human biology and improve health. The ENCODE Consortium is integrating multiple technologies and approaches in a collective effort to discover and define the functional elements encoded in the human genome, including genes, transcripts, and transcriptional regulatory regions, together with their attendant chromatin states and DNA methylation patterns. In the process, standards to ensure high-quality data have been implemented, and novel algorithms have been developed to facilitate analysis. Data and derived results are made available through a freely accessible database. Here we provide an overview of the project and the resources it is generating and illustrate the application of ENCODE data to interpret the human genome.
Understanding the extent of genomic transcription and its functional relevance is a central goal in genomics research. However, detailed genome-wide investigations of transcriptome complexity in major mammalian organs have been scarce. Here, using extensive RNA-seq data, we show that transcription of the genome is substantially more widespread in the testis than in other organs across representative mammals. Furthermore, we reveal that meiotic spermatocytes and especially postmeiotic round spermatids have remarkably diverse transcriptomes, which explains the high transcriptome complexity of the testis as a whole. The widespread transcriptional activity in spermatocytes and spermatids encompasses protein-coding and long noncoding RNA genes but also poorly conserves intergenic sequences, suggesting that it may not be of immediate functional relevance. Rather, our analyses of genome-wide epigenetic data suggest that this prevalent transcription, which most likely promoted the birth of new genes during evolution, is facilitated by an overall permissive chromatin in these germ cells that results from extensive chromatin remodeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.