Muscle wasting and cachexia have long been postulated to be key determinants of cancer-related death, but there has been no direct experimental evidence to substantiate this hypothesis. Here, we show that in several cancer cachexia models, pharmacological blockade of ActRIIB pathway not only prevents further muscle wasting but also completely reverses prior loss of skeletal muscle and cancer-induced cardiac atrophy. This treatment dramatically prolongs survival, even of animals in which tumor growth is not inhibited and fat loss and production of proinflammatory cytokines are not reduced. ActRIIB pathway blockade abolished the activation of the ubiquitin-proteasome system and the induction of atrophy-specific ubiquitin ligases in muscles and also markedly stimulated muscle stem cell growth. These findings establish a crucial link between activation of the ActRIIB pathway and the development of cancer cachexia. Thus ActRIIB antagonism is a promising new approach for treating cancer cachexia, whose inhibition per se prolongs survival.
Chronic kidney disease (CKD) and several other catabolic conditions are characterized by increased circulating inflammatory cytokines, defects in IGF-1 signaling, abnormal muscle protein metabolism, and progressive muscle atrophy. In these conditions, no reliable treatments successfully block the development of muscle atrophy. In mice with CKD, we found a 2- to 3-fold increase in myostatin expression in muscle. Its pharmacological inhibition by subcutaneous injections of an anti-myostatin peptibody into CKD mice (IC(50) ∼1.2 nM) reversed the loss of body weight (≈5-7% increase in body mass) and muscle mass (∼10% increase in muscle mass) and suppressed circulating inflammatory cytokines vs. results from CKD mice injected with PBS. Pharmacological myostatin inhibition also decreased the rate of protein degradation (16.38 ± 1.29%; P<0.05), increased protein synthesis in extensor digitorum longus muscles (13.21 ± 1.09%; P<0.05), markedly enhanced satellite cell function, and improved IGF-1 intracellular signaling. In cultured muscle cells, TNF-α increased myostatin expression via a NF-κB-dependent pathway, whereas muscle cells exposed to myostatin stimulated IL-6 production via p38 MAPK and MEK1 pathways. Because IL-6 stimulates muscle protein breakdown, we conclude that CKD increases myostatin through cytokine-activated pathways, leading to muscle atrophy. Myostatin antagonism might become a therapeutic strategy for improving muscle growth in CKD and other conditions with similar characteristics.
BackgroundProblematic Internet Use (PIU) is a growing problem in Chinese adolescents. There are many risk factors for PIU, which are found at school and at home. This study was designed to investigate the prevalence of PIU and to investigate the potential risk factors for PIU among high school students in China.Methodology/Principal FindingsA cross-sectional study was conducted. A total of 14,296 high school students were surveyed in four cities in Guangdong province. Problematic Internet Use was assessed by the 20-item Young Internet Addiction Test (YIAT). Information was also collected on demographics, family and school-related factors and Internet usage patterns. Of the 14,296 students, 12,446 were Internet users. Of those, 12.2% (1,515) were identified as problematic Internet users (PIUs). Generalized mixed-model regression revealed that there was no gender difference between PIUs and non-PIUs. High study-related stress, having social friends, poor relations with teachers and students and conflictive family relationships were risk factors for PIU. Students who spent more time on-line were more likely to develop PIU. The habits of and purposes for Internet usage were diverse, influencing the susceptibility to PIU.Conclusions/SignificancePIU is common among high school students, and risk factors are found at home and at school. Teachers and parents should pay close attention to these risk factors. Effective measures are needed to prevent the spread of this problem.
The embryonic kidneys of larval aquatic vertebrates such as fish and frogs serve as excellent model systems for exploring the early development of nephric organs. These experimental systems can easily be manipulated by microsurgery, microinjection, genetics, or combinations of these approaches. However, little is known about how physiologically similar these simple kidneys are to the more complex mammalian adult kidneys. In addition, almost nothing is known about proximo-distal patterning of nephrons in any organism. In order begin to explore the physiological specialization of the pronephric tubules along the proximo-distal axis, a combination of uptake assays using fluorescently tagged proteins, LDL particles and dextrans, and an informatics-targeted in situ screen for transport proteins have been performed on embryos of the frog, Xenopus laevis. Genes identified to be expressed within unique subdomains of the pronephric tubules include an ABC transporter, two amino acid cotransporters, two sodium bicarbonate cotransporters, a novel sodium glucose cotransporter, a sodium potassium chloride cotransporter (NKCC2), a sodium chloride organic solute cotransporter (ROSIT), and a zinc transporter. A novel combination of colorimetric and fluorescent whole-mount in situ hybridization (FCIS) was used to precisely map the expression domain of each gene within the pronephros. These data indicate specialized physiological function and define multiple novel segments of the pronephric tubules, which contain at least six distinct transport domains. Uptake studies identified functional transport domains and also demonstrated that early glomeral leakage can allow visualization of protein movement into the pronephric tubules and thus establish a system for investigating experimentally induced proteinuria and glomerulonephritis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.