Lead halide perovskite solar cells have recently emerged as a very promising photovoltaic technology due to their excellent power conversion efficiencies; however, the toxicity of lead and the poor stability of perovskite materials remain two main challenges that need to be addressed. Here, for the first time, we report a lead-free, highly stable CHNHCuBrI compound. The CHNHCuBrI films exhibit extraordinary hydrophobic behavior with a contact angle of ∼90°, and their X-ray diffraction patterns remain unchanged even after 4 h of water immersion. UV/vis absorption spectrum shows that CHNHCuBrI compound has an excellent optical absorption over the entire visible spectrum. We applied this copper-based light absorber in printable mesoscopic solar cell for the initial trial and achieved a power conversion efficiency of ∼0.5%. Our study represents an alternative pathway to develop low-toxic and highly stable organic-inorganic hybrid materials for photovoltaic application.
Background:The widespread threat of severe acute respiratory syndrome (SARS) to human life has spawned challenges to develop fast and accurate analytical methods for its early diagnosis and to create a safe antiviral vaccine for preventive use. Consequently, we thoroughly investigated the immunoreactivities with patient sera of a series of synthesized peptides from SARS-coronavirus structural proteins. Methods: We synthesized 41 peptides ranging in size from 16 to 25 amino acid residues of relatively high hydrophilicity. The immunoreactivities of the peptides with SARS patient sera were determined by ELISA. Results: Four epitopic sites, S599, M137, N66, and N371-404, located in the SARS-coronavirus S, M, and N proteins, respectively, were detected by screening synthesized peptides. Notably, N371 and N385, located at the COOH terminus of the N protein, inhibited binding of antibodies to SARS-coronavirus lysate and bound to antibodies in >94% of samples from SARS study patients. N385 had the highest affinity for forming peptide-antibody complexes with SARS serum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.