Sea-level monitoring is important for the safety of coastal cities and analysis of ocean and climate. Sea levels can be estimated based using the global navigation satellite system–interferometry reflectometry (GNSS–IR). The frequency in a signal-to-noise ratio (SNR) arc has been found to be related to the height between the GNSS antenna and reflecting surface, which is called reflector height (RH, h). The height variation of the reflecting surface causes an error, and this error is the most significant error in the GNSS–IR sea-level retrieval. The key to the correction of height variation error lies in the determination of the RH variation rate ḣ. The classical correction method determines ḣ based on tide analysis of a coarse RH series over a longer time period. Therefore, ḣ inherits errors in coarse RH series, which contains significant bias during a storm surge, and correcting this requires data accumulation. This study proposes a correction method of height variation error based on just one SNR arc based on wavelet analysis and least-square estimation. First, using wavelet analysis, instantaneous frequencies are extracted in one SNR arc; these frequencies are then converted to RH series. Second, using least-square estimation, h and ḣ are conjointly solved based on the RH series from wavelet analysis. Data of GNSS site HKQT located in Hong Kong, China, during a period of time that includes Typhoon Hato were used. The root-mean-square errors (RMSEs) of retrievals were 21.5 cm for L1, 9.5 cm for L2P, 9.3 cm for L2C, and 7.6 cm for L5 of GPS; 16.8 cm for L1C, 14.1 cm for L1P, 12.6 cm for L2C, and 10.7 cm for L2P of GLONASS; 15.7 cm for L1, 11.2 cm for L5, 12.2 cm for L7, and 9.6 cm for L8 of Galileo. Results showed this method can correct the height variation error based on just one SNR arc, can avoid the inheritance of errors, and can be used during periods of storm surge.
The load characteristic of typical household electrical equipment is elaborately analyzed. Considering the electric vehicles’ (EVs’) charging behavior and air conditioning’s thermodynamic property, an electricity price-based demand response (DR) model and an incentive-based DR model for two kinds of typical high-power electrical equipment are proposed to obtain the load curve considering two different kinds of DR mechanisms. Afterwards, a load shedding strategy is introduced to improve the traditional reliability evaluation method for distribution networks, with the capacity constraints of tie lines taken into account. Subsequently, a reliability calculation method of distribution networks considering the shortage of power supply capacity and outages is presented. Finally, the Monte Carlo method is employed to calculate the reliability index of distribution networks with different load levels, and the impacts of different DR strategies on the reliability of distribution networks are analyzed. The results show that both DR strategies can improve the distribution system reliability.
With the city developing rapidly, the waste has been the human common issue and the waste garment has been a serious environment problem and pain point during the city developing due to the increasingly large proportion in city solid rubbish. From the professional perspective, the author believes that it is very important and necessary to backtrack the beginning of waste garment generation and take the waste garment classifying on as the object of research, therefore, the paper discusses the classifying approach of waste garment, the market value and social value comprehensively and systematically. At same time, according to industry characteristic, the article suggests that classifying of waste garment should be refined so that maximize value of waste garment and create conditions for eco-civilized city construction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.