The lipase from Pseudomonas fluorescens (Lipase AK, AKL) was immobilized onto the magnetic Fe(3)O(4) nanoparticles via hydrophobic interaction. Enzyme loading and immobilization yield were determined as 21.4±0.5 mg/g and 49.2±1.8 %, respectively. The immobilized AKL was successfully used for resolution of 2-octanol with vinyl acetate used as acyl donor. Effects of organic solvent, water activity, substrate ratio, and temperature were investigated. Under the optimum conditions, the preferred isomer for AKL is the (R)-2-octanol and the highest enantioselectivity (E=71.5±2.2) was obtained with a higher enzyme activity (0.197±0.01 μmol/mg/min). The results also showed that the immobilized lipase could be easily separated from reaction media by the magnetic steel and remained 89 % of its initial activity as well as the nearly unchanged enantioselectivity after five consecutive cycles, indicating a high stability in practical operation.
We report herein a new class of metal ion chemosensors and give the first example of a metal-dependent peptidase chemosensor for metal ions. The chemosensor contains the basic specific Ni(II)-dependent peptide bond hydrolysis sequence (Gly-Ala-Ser-Arg-His-Trp-Lys-Phe-Lys). The substrate was labeled with a fluorophore at the N-terminal and a quencher at the C-terminal Lys side chain. Initially, the MOCAc ((7-methoxycoumarin-4-yl)acetyl-) emission was quenched by the nearby quencher. In the presence of Ni(II), the substrate was irreversibly cleaved at the cleavage site, leading to a 20-fold increase in fluorescence intensity. The chemosensor combines the high selectivity of a peptidase (at least greater than tenfold for Ni(II) over other metal ions) with the high sensitivity of fluorescence detection limit of 50 nM and can be applied for the quantitative detection of Ni(II) over a concentration range of three orders of magnitude. Given this degree of selectivity and sensitivity, our molecular engineering design may prove useful in the future development of other peptidase-based probes for different metal ions in toxicological and environmental monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.