We consider the stochastic optimal control problem of McKean-Vlasov stochastic differential equation where the coefficients may depend upon the joint law of the state and control. By using feedback controls, we reformulate the problem into a deterministic control problem with only the marginal distribution of the process as controlled state variable, and prove that dynamic programming principle holds in its general form. Then, by relying on the notion of differentiability with respect to probability measures recently introduced by P.L. Lions in [32], and a special Itô formula for flows of probability measures, we derive the (dynamic programming) Bellman equation for mean-field stochastic control problem, and prove a verification theorem in our McKeanVlasov framework. We give explicit solutions to the Bellman equation for the linear quadratic mean-field control problem, with applications to the mean-variance portfolio selection and a systemic risk model. We also consider a notion of lifted viscosity solutions for the Bellman equation, and show the viscosity property and uniqueness of the value function to the McKean-Vlasov control problem. Finally, we consider the case of McKean-Vlasov control problem with open-loop controls and discuss the associated dynamic programming equation that we compare with the case of closed-loop controls.MSC Classification: 93E20, 60H30, 60K35.
We study the optimal control of general stochastic McKean-Vlasov equation. Such problem is motivated originally from the asymptotic formulation of cooperative equilibrium for a large population of particles (players) in mean-field interaction under common noise. Our first main result is to state a dynamic programming principle for the value function in the Wasserstein space of probability measures, which is proved from a flow property of the conditional law of the controlled state process. Next, by relying on the notion of differentiability with respect to probability measures due to P.L. Lions [35], and Itô's formula along a flow of conditional measures, we derive the dynamic programming Hamilton-Jacobi-Bellman equation, and prove the viscosity property together with a uniqueness result for the value function. Finally, we solve explicitly the linear-quadratic stochastic McKean-Vlasov control problem and give an application to an interbank systemic risk model with common noise.MSC Classification: 93E20, 60H30, 60K35.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.