Although field-collected recordings typically contain multiple simultaneously vocalizing birds of different species, acoustic species classification in this setting has received little study so far. This work formulates the problem of classifying the set of species present in an audio recording using the multi-instance multi-label (MIML) framework for machine learning, and proposes a MIML bag generator for audio, i.e., an algorithm which transforms an input audio signal into a bag-of-instances representation suitable for use with MIML classifiers. The proposed representation uses a 2D time-frequency segmentation of the audio signal, which can separate bird sounds that overlap in time. Experiments using audio data containing 13 species collected with unattended omnidirectional microphones in the H. J. Andrews Experimental Forest demonstrate that the proposed methods achieve high accuracy (96.1% true positives/negatives). Automated detection of bird species occurrence using MIML has many potential applications, particularly in long-term monitoring of remote sites, species distribution modeling, and conservation planning.
This paper studies the ensemble selection problem for unsupervised learning. Given a large library of different clustering solutions, our goal is to select a subset of solutions to form a smaller but better performing cluster ensemble than using all available solutions. We design our ensemble selection methods based on quality and diversity, the two factors that have been shown to influence cluster ensemble performance. Our investigation revealed that using quality or diversity alone may not consistently achieve improved performance. Based on our observations, we designed three different selection approaches that jointly consider these two factors. We empirically evaluated their performances in comparison with both full ensembles and a random selection strategy. Our results indicated that by explicitly considering both quality and diversity in ensemble selection, we can achieve statistically significant performance improvement over full ensembles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.