Textiles that are capable of harvesting biomechanical energy via triboelectric effects are of interest for self-powered wearable electronics. Fabrication of conformable and durable textiles with high triboelectric outputs remains challenging. Here we propose a washable skin-touch-actuated textile-based triboelectric nanogenerator for harvesting mechanical energy from both voluntary and involuntary body motions. Black phosphorus encapsulated with hydrophobic cellulose oleoyl ester nanoparticles serves as a synergetic electron-trapping coating, rendering a textile nanogenerator with long-term reliability and high triboelectricity regardless of various extreme deformations, severe washing, and extended environmental exposure. Considerably high output (~250–880 V, ~0.48–1.1 µA cm−2) can be attained upon touching by hand with a small force (~5 N) and low frequency (~4 Hz), which can power light-emitting diodes and a digital watch. This conformable all-textile-nanogenerator is incorporable onto cloths/skin to capture the low output of 60 V from subtle involuntary friction with skin, well suited for users’ motion or daily operations.
Piezoelectric nanogenerators with large output, high sensitivity, and good flexibility have attracted extensive interest in wearable electronics and personal healthcare. In this paper, the authors propose a high-performance flexible piezoelectric nanogenerator based on piezoelectrically enhanced nanocomposite micropillar array of polyvinylidene fluoride-trifluoroethylene (P(VDF-TrFE))/barium titanate (BaTiO ) for energy harvesting and highly sensitive self-powered sensing. By a reliable and scalable nanoimprinting process, the piezoelectrically enhanced vertically aligned P(VDF-TrFE)/BaTiO nanocomposite micropillar arrays are fabricated. The piezoelectric device exhibits enhanced voltage of 13.2 V and a current density of 0.33 µA cm , which an enhancement by a factor of 7.3 relatives to the pristine P(VDF-TrFE) bulk film. The mechanisms of high performance are mainly attributed to the enhanced piezoelectricity of the P(VDF-TrFE)/BaTiO nanocomposite materials and the improved mechanical flexibility of the micropillar array. Under mechanical impact, stable electricity is stably generated from the nanogenerator and used to drive various electronic devices to work continuously, implying its significance in the field of consumer electronic devices. Furthermore, it can be applied as self-powered flexible sensor work in a noncontact mode for detecting air pressure and wearable sensors for detecting some human vital signs including different modes of breath and heartbeat pulse, which shows its potential applications in flexible electronics and medical sciences.
Smart sensing electronic devices with good transparency, high stretchability, and self-powered sensing characteristics are essential in wearable health monitoring systems. This paper innovatively proposes a stretchable nanocomposite nanogenerator with good transparency that can be conformally attached to the human body to harvest biomechanical energy and monitor physiological signals. The work reports an innovative device that uses sprayed silver nanowires as transparent electrodes and sandwiches a nanocomposite of piezoelectric BaTiO and polydimethylsiloxane as the sensing layer, which exhibits good transparency and mechanical transformability with stretchable, foldable, and twistable properties. The highly flexible nanogenerator affords a good input-output linearity under the vertical force and the sensing ability to detect lateral stretching deformation up to 60% strain under piezoelectric mechanisms. Furthermore, the proposed device can effectively harvest touch energies from the human body as a single-electrode triboelectric nanogenerator. Under periodic contact and separation, a maximum output voltage of 105 V, a current density of 6.5 μA/cm, and a power density of 102 μW/cm can be achieved, exhibiting a good power generation performance. Owing to the high conformability and excellent sensitivity of the nanogenerator, it can also act as a self-powered wearable sensor attached to different parts of the human body for real-time monitoring of the human physiological signals such as eye blinking, pronunciation, arm movement, and radial artery pulse. The designed nanocomposite nanogenerator shows great potential for use in self-powered e-skins and healthcare monitoring systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.