Accurate optic disc (OD) detection is an essential yet vital step for retinal disease diagnosis. In the paper, an approach for segmenting OD boundary without manpower named full-automatic double boundary extraction is designed. There are two main advantages in it. (1) Since the performances and the computational cost produced by iterations of contour evolution of active contour models- (ACM-) based approaches greatly depend on the initialization, this paper proposes an effective and adaptive initial level set contour extraction approach using saliency detection and threshold techniques. (2) In order to handle unreliable information generated by intensity in abnormal retinal images caused by diseases, a modified LIF approach is presented by incorporating the shape prior information into LIF. We test the effectiveness of the proposed approach on a publicly available DIARETDB0 database. Experimental results demonstrate that our approach outperforms well-known approaches in terms of the average overlapping ratio and accuracy rate.
With the development of computer vision, high quality images with rich information have great research potential in both daily life and scientific research. However, due to different lighting conditions, surrounding noise and other reasons, the image quality is different, which seriously affects people's discrimination of the information in the image, thus causing unnecessary conflicts and results. Especially in the dark, the images captured by the camera are difficult to identify, and the smart system relies heavily on high-quality input images. The image collected in low-light environment has the characteristic with high noise and color distortion, which makes it difficult to utilize the image and can not fully explore the rich value information of the image. In order to improve the quality of low-light image, this paper proposes a Heterogenous low-light image enhancement method based on DenseNet generative adversarial network. Firstly, the generative network of generative adversarial network is realized by using DenseNet framework. Secondly, the feature map from low light image to normal light image is learned by using the generative adversarial network. Thirdly, the enhancement of low-light image is realized. The experimental results show that, in terms of PSNR, SSIM, NIQE, UQI, NQE and PIQE indexes, compared with the state-of-the-art enhancement algorithms, the values are ideal, the proposed method can improve the image brightness more effectively and reduce the noise of enhanced image.
At present, the traditional machine learning methods and convolutional neural network (CNN) methods are mostly used in image recognition. The feature extraction process in traditional machine learning for image recognition is mostly executed by manual, and its generalization ability is not strong enough. The earliest convolutional neural network also has many defects, such as high hardware requirements, large training sample size, long training time, slow convergence speed and low accuracy. To solve the above problems, this paper proposes a novel deep LeNet-5 convolutional neural network model for image recognition. On the basis of Lenet-5 model with the guaranteed recognition rate, the network structure is simplified and the training speed is improved. Meanwhile, we modify the Logarithmic Rectified Linear Unit (L_ReLU) of the activation function. Finally, the experiments are carried out on the MINIST character library to verify the improved network structure. The recognition ability of the network structure in different parameter s is analyzed compared with the state-of-the-art recognition algorithms. In terms of the recognition rate, the proposed method has exceeded 98%. The results show that the accuracy of the proposed structure is significantly higher than that of the other recognition algorithms, which provides a new reference for the current image recognition.
Modeling how network-level traffic flow changes in the urban environment is useful for decision-making in transportation, public safety and urban planning. The traffic flow system can be viewed as a dynamic process that transits between states (e.g., traffic volumes on each road segment) over time. In the real-world traffic system with traffic operation actions like traffic signal control or reversible lane changing, the system's state is influenced by both the historical states and the actions of traffic operations. In this paper, we consider the problem of modeling network-level traffic flow under a real-world setting, where the available data is sparse (i.e., only part of the traffic system is observed). We present DTIGNN , an approach that can predict network-level traffic flows from sparse data. DTIGNN models the traffic system as a dynamic graph influenced by traffic signals, learns the transition models grounded by fundamental transition equations from transportation, and predicts future traffic states with imputation in the process. Through comprehensive experiments, we demonstrate that our method outperforms state-of-the-art methods and can better support decision-making in transportation. CCS CONCEPTS• Information systems → Spatial-temporal systems; • Computing methodologies → Neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.