Abstract. We develop a multi-element generalized polynomial chaos (ME-gPC) method for arbitrary probability measures and apply it to solve ordinary and partial differential equations with stochastic inputs. Given a stochastic input with an arbitrary probability measure, its random space is decomposed into smaller elements. Subsequently, in each element a new random variable with respect to a conditional probability density function (PDF) is defined, and a set of orthogonal polynomials in terms of this random variable is constructed numerically. Then, the generalized polynomial chaos (gPC) method is implemented element-by-element. Numerical experiments show that the cost for the construction of orthogonal polynomials is negligible compared to the total time cost. Efficiency and convergence of ME-gPC are studied numerically by considering some commonly used random variables. ME-gPC provides an efficient and flexible approach to solving differential equations with random inputs, especially for problems related to long-term integration, large perturbation, and stochastic discontinuities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.