Microwave absorption materials (MAMs) with lightweight density and ultrabroad-band microwave absorption performance are urgently needed in advanced MAMs, which are still a big challenge and have been rarely achieved. Here, a new wide bandwidth absorption model was designed, which fuses the electromagnetic resonance loss ability of a periodic porous structure in the lowfrequency range and the dielectric loss ability of dielectric materials in the highfrequency range. Based on this model, a lightweight porous cellulose nanofiber (CNF)/carbon nanotube (CNT) foam consisting of a cellular vertical porous architecture with the macropore diameters between 30 and 90 μm and a nanoporous architecture at a scale of 1.7−50 nm was obtained by an ice-template method using CNTs and CNFs as "building blocks". Benefiting from the unique architecture, the effective absorption bandwidth reaches 29.7 GHz, and its specific microwave absorption performance exceeds 80,000 dB•cm −2 •g −1 , which far surpasses those of the MAMs previously reported, including all CNT-based composites. Moreover, the CNF/CNT foam possesses ultralow density (9.2 mg/cm 3 ) and strong fatigue resistance, all coming from the wellinterconnected porous structure and the strong hydrogen bonds among CNF−CNF and CNF−CNT molecular chains.
Oxidation behaviors of carbon fiber reinforced SiC matrix composites (C/SiC) are one of the most noteworthy properties. For C/SiC, the oxidation behavior was controlled by matrix microcracks caused by the mismatch of coefficients of thermal expansion (CTEs) and elastic modulus between carbon fiber and SiC matrix. In order to improve the oxidation resistance, multilayer SiC-Si3N4 matrices were fabricated by chemical vapor infiltration (CVI) to alleviate the above two kinds of mismatch and change the local stress distribution. For the oxidation of C/SiC with multilayer matrices, matrix microcracks would be deflected at the transition layer between different layers of multilayer SiC-Si3N4 matrix to lengthen the oxygen diffusion channels, thereby improving the oxidation resistance of C/SiC, especially at 800 and 1000 °C. The strength retention ratio was increased from 61.9% (C/SiC-SiC/SiC) to 75.7% (C/SiC-Si3N4/SiC/SiC) and 67.8% (C/SiC-SiC/Si3N4/SiC) after oxidation at 800 °C for 10 h.
In this work, Ti3SiC2-based ceramics were fabricated by the infiltration of liquid silicon into TiC preform by incorporating a small amount of Al. Al can play a catalytic role to promote the formation of TiC twins before liquid silicon infiltration (LSI), which leads to the increase of transformation efficiency from TiC to Ti3SiC2 in the LSI process. When the Al content in the TiC preform increases to 9 wt.%, the volume content of Ti3SiC2 reaches 85 vol.%, revealing the high electromagnetic interference shielding effectiveness of 39 dB in the frequency range of 8.2–12.4 GHz. The results indicate that it is an effective way to synthesize Ti3SiC2-based ceramics with excellent electromagnetic shielding performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.