State-of-the-art radio frequency identification (RFID)-based indoor autonomous vehicles localization methods are mostly based on received signal strength indicator (RSSI) measurements. However, the accuracy of these methods is not high enough for real-world scenarios. To overcome this problem, a novel dual-frequency phase difference of arrival (PDOA) ranging-based indoor autonomous vehicle localization and tracking scheme was developed. Firstly, the method gets the distance between the RFID reader and the tag by dual-frequency PDOA ranging. Then, a maximum likelihood estimation and semi-definite programming (SDP)-based localization algorithm is utilized to calculate the position of the autonomous vehicles, which can mitigate the multipath ranging error and obtain a more accurate positioning result. Finally, vehicle traveling information and the position achieved by RFID localization are fused with a Kalman filter (KF). The proposed method can work in a low-density tag deployment environment. Simulation experiment results showed that the proposed vehicle localization and tracking method achieves centimeter-level mean tracking accuracy.
In this study, we demonstrated a new approach for creating hybrid computational breast phantoms that combine the inherent realism of patient--based anatomy as well as high resolution and quantitative control of mathematical textures and rule--based structures.vi
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.