While the current generation of mobile and fixed communication networks has been standardized for mobile broadband services, the next generation is driven by the vision of the Internet of Things and mission critical communication services requiring latency in the order of milliseconds or submilliseconds. However, these new stringent requirements have a large technical impact on the design of all layers of the communication protocol stack. The cross layer interactions are complex due to the multiple design principles and technologies that contribute to the layers' design and fundamental performance limitations. We will be able to develop low-latency networks only if we address the problem of these complex interactions from the new point of view of sub-milliseconds latency. In this article, we propose a holistic analysis and classification of the main design principles and enabling technologies that will make it possible to deploy low-latency wireless communication networks. We argue that these design principles and enabling technologies must be carefully orchestrated to meet the stringent requirements and to manage the inherent trade-offs between low latency and traditional performance metrics. We also review currently ongoing standardization activities in prominent standards associations, and discuss open problems for future research.
There are many initiatives and technologies working towards implementing factories of the future. One consensus is that the classical hierarchical automation system design needs to be flattened while supporting the functionality of both Operation Technology (OT) and Information Technology (IT) within the same network infrastructure. To achieve the goal of IT/OT convergence in process automation, an evolutionary transition is preferred. Challenges are foreseen during the transition, mainly caused by the traditional automation architecture, and the main challenge is to identify the gap between the current and future network architectures. To address the challenges, in this paper, we describe one desired future scenario for process automation and carry out traffic measurements from a pulp and paper mill. The measured traffic is further analyzed, which reveals representative traffic characteristics in the process automation. Finally, the key challenges and future directions towards a system architecture for factories of the future are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.