We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges with possibly well-defined zigzag or armchair-edge structures. Electrical transport experiments showed that, unlike single-walled carbon nanotubes, all of the sub-10-nanometer GNRs produced were semiconductors and afforded graphene field effect transistors with on-off ratios of about 10(7) at room temperature.
Large‐scale electrical energy storage has become more important than ever for reducing fossil energy consumption in transportation and for the widespread deployment of intermittent renewable energy in electric grid. However, significant challenges exist for its applications. Here, the status and challenges are reviewed from the perspective of materials science and materials chemistry in electrochemical energy storage technologies, such as Li‐ion batteries, sodium (sulfur and metal halide) batteries, Pb‐acid battery, redox flow batteries, and supercapacitors. Perspectives and approaches are introduced for emerging battery designs and new chemistry combinations to reduce the cost of energy storage devices.
In this paper, we describe how WO(3) hollow spheres have been synthesized in solution phase by the controlled hydrolysis of WCl(6) using novel carbon microspheres as the templates. All of the products were characterized by X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), and transmission electron microscopy (TEM). The as-synthesized spheres had large diameters of about 400 nm and thin shells of about 30 nm composed of numerous small nanocrystals. Prompted by the porous structure and small crystal size of the shell wall, we constructed WO(3) hollow-sphere gas sensors and found that these sensors had good sensitivity to alcohol, acetone, CS(2), and other organic gases.
We report a regioregular bis-pyridal[2,1,3]-thiadiazole (BPT) acceptor strategy to construct the first ambipolar pyridal[2,1,3]thiadiazole-based semiconducting polymer (PBPTV). The use of BPT unit enables PBPTV to achieve high electron affinity, low LUMO level, and extended π-conjugation. All these factors provide PBPTV with encouraging hole and electron mobilities up to 6.87 and 8.49 cm V s, respectively. Our work demonstrates that the BPT unit is a promising building block for designing high-performance electron-transporting semiconductors in organic electronics.
Lead (Pb) is a highly toxic element to the human body. After phasing out of leaded gasoline we find that the blood lead level of children strongly correlates with the lead concentration in atmospheric particles, and the latter correlates with the coal consumption instead of leaded gasoline. Combined with the (207)Pb/(206)Pb ratio measurements, we find that the coal consumption fly ash is a dominate source of Pb exposure to children in Shanghai, rather than vehicle exhaust, metallurgic dust, paint dust, and drinking water. Those particles are absorbed to children's blood via breathing and digesting their deposition on ground by hand-to-mouth activities. Probably the same situation occurs in other large cities of developing countries where the structure of energy supply is mainly based on coal-combustion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.