In recent years, particulate matter of 2.5 µm or less (PM2.5) pollution in China has decreased but, at the same time, ozone (O3) pollution has become increasingly serious. Due to the different research areas and research periods, the existing analyses of the correlation between PM2.5 and O3 have reached different conclusions. In order to clarify the relationship between PM2.5 and O3, this study selected mainland China as the research area, based on the PM2.5 and O3 concentration data of 1458 air quality monitoring stations, and analyzed the correlation between PM2.5 and O3 for different time scales and geographic divisions. Moreover, by combining the characteristics of the pollutants, topography, and climatic features of the study area, we attempted to discuss the causes of the spatial and temporal differences of R-PO (the correlation between PM2.5 and O3). The study found that: (1) R-PO tends to show a positive correlation in summer and a negative correlation in winter, (2) the correlation coefficient of PM2.5 and O3 is lower in the morning and higher in the afternoon, and (3) R-PO also shows significant spatial differences, including north–south differences and coastland–inland differences.
Urbanization reflects the overall behavior of human society; thus, characterization of its associated spatial and temporal trends has been extensively researched. This study examines the process of urban expansion in the Huaihe River Basin (HRB) which is a key transition region within China's urban system. In order to grasp the urban expansion process in different temporal sequences objectively, rapidly, and accurately, we used remote sensing data to assess the urban expansion in time and space. Urban expansion rules were defined for the urban area, urbanization intensification, extended dynamic degree, and spatial pattern. The research findings show that the urban area expansion speed was at medium level throughout the entire HRB and within each province. Presently, the formation of a whole urban agglomeration or urban system is not complete in the HRB; urban expansion in the HRB displayed space-time disequilibrium tendencies during 1998-2013.
Total ozone data from the Aura Ozone Monitoring Instrument (OMI) play an important role in the monitoring of the spatial distribution and temporal change of total ozone. However, since September 2005, and especially after mid‐2006, due to row anomalies in the OMI instrument, one third to one half of the OMI total ozone data has been missing. In this study, we generate a spatially continuous and daily global total ozone product (2004–2014) by quantitatively reconstructing the level 3 (gridded) total ozone data via a new two‐step method, which takes full advantage of the temporal and spatial correlation characteristics. First, a preliminary prediction is made based on an adaptive weighted temporal fitting method. Residual correction based on an anisotropic kriging method is then proposed to further improve the prediction accuracy. To assess the efficacy of the proposed method, a comparison of different gap filling algorithms through a series of simulated experiments was performed. On this basis, we further evaluated the proposed product with Brewer spectrophotometers' total ozone columns. The evaluation results suggest that the proposed method outperforms the other algorithms, and its product is better able to capture total ozone variation than the MERRA‐2 assimilated ozone product. The total ozone product produced in this study can be freely downloaded from http://sendimage.whu.edu.cn/send-resource-download/.
The low-frequency performance of advanced gravitational-wave detectors is limited by the seismic
noise and the associated control noise. A six-degree-of-freedom seismometer has been proposed in
[Class. Quant. Grav. 36, 245006 (2019)] to improve the active isolation system. The standard
readout scheme, which directly inverts the sensing matrix, gives dynamically independent but not
statistically independent estimators for different degrees of freedom. This paper studies the opti mal readout scheme by using optimal filters to combine the sensor outputs. The improvement is
ultimately limited by the sensor noise and the ground motion, which decreases the correlation. For
the real-time implementation, we have considered fitting the optimal filters numerically under the
passive and causal constraint.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.