Salmonella Typhimurium is an invasive enteric pathogen that causes gastroenteritis in humans and life-threatening systemic infections in mice. During infection of the intestine, S. Typhimurium can exploit nitrate as an electron acceptor to enhance its growth. However, the roles of nitrate on S. Typhimurium systemic infection are unknown. In this study, nitrate levels were found to be significantly increased in the liver and spleen of mice systemically infected by S. Typhimurium. Mutations in genes encoding nitrate transmembrane transporter (narK) or nitrate-producing flavohemoprotein (hmpA) decreased the replication of S. Typhimurium in macrophages and reduced systemic infection in vivo, suggesting that nitrate utilization promotes S. Typhimurium systemic virulence. Moreover, nitrate utilization contributes to the acidification of the S. Typhimurium cytoplasm, which can sustain the virulence of S. Typhimurium by increasing the transcription of virulence genes encoding on Salmonella pathogenicity island 2 (SPI-2). Furthermore, the growth advantage of S. Typhimurium conferred by nitrate utilization occurred only under low-oxygen conditions, and the nitrate utilization was activated by both the global regulator Fnr and the nitrate-sensing two-component system NarX-NarL. Collectively, this study revealed a novel mechanism adopted by Salmonella to interact with its host and increase its virulence.
Salmonella Typhimurium is a Gram-negative intestinal pathogen that can infect humans and a variety of animals, causing gastroenteritis or serious systemic infection. Replication within host macrophages is essential for S. Typhimurium to cause systemic infection. By analyzing transcriptome data, the expression of yhjC gene, which encodes a putative regulator in S. Typhimurium, was found to be significantly up-regulated after the internalization of Salmonella by macrophages. Whether yhjC gene is involved in S. Typhimurium systemic infection and the related mechanisms were investigated in this study. The deletion of yhjC reduced the replication ability of S. Typhimurium in macrophages and decreased the colonization of S. Typhimurium in mouse systemic organs (liver and spleen), while increasing the survival rate of the infected mice, suggesting that YhjC protein promotes systemic infection by S. Typhimurium. Furthermore, by using transcriptome sequencing and RT-qPCR assay, the transcription of several virulence genes, including spvD, iroCDE and zraP, was found to be down-regulated after the deletion of yhjC. Electrophoretic mobility shift assay showed that YhjC protein can directly bind to the promoter region of spvD and zraP to promote their transcription. These findings suggest that YhjC contributes to the systemic virulence of S. Typhimurium via the regulation of multiple virulence genes and YhjC could represent a promising target to control S. Typhimurium infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.