This paper concerns the Vertex reinforced jump process (VRJP), the Edge reinforced random walk (ERRW) and their link with a random Schrödinger operator. On infinite graphs, we define a 1-dependent random potential β extending that defined in [20] on finite graphs, and consider its associated random Schrödinger operator H β . We construct a random function ψ as a limit of martingales, such that ψ = 0 when the VRJP is recurrent, and ψ is a positive generalized eigenfunction of the random Schrödinger operator with eigenvalue 0, when the VRJP is transient. Then we prove a representation of the VRJP on infinite graphs as a mixture of Markov jump processes involving the function ψ, the Green function of the random Schrödinger operator and an independent Gamma random variable. On Z d , we deduce from this representation a zero-one law for recurrence or transience of the VRJP and the ERRW, and a functional central limit theorem for the VRJP and the ERRW at weak reinforcement in dimension d ≥ 3, using estimates of [10,8]. Finally, we deduce recurrence of the ERRW in dimension d = 2 for any initial constant weights (using the estimates of Merkl and Rolles, [15,17]), thus giving a full answer to the old question of Diaconis. We also raise some questions on the links between recurrence/transience of the VRJP and localization/delocalization of the random Schrödinger operator H β .
Semiconductor nanowires are versatile building blocks for optoelectronic devices, in part because nanowires offer an increased freedom in material design due to relaxed constraints on lattice matching during the epitaxial growth. This enables the growth of ternary alloy nanowires in which the bandgap is tunable over a large energy range, desirable for optoelectronic devices. However, little is known about the effects of doping in the ternary nanowire materials, a prerequisite for applications. Here we present a study of p-doping of InGaP nanowires and show that the growth dynamics are strongly affected when diethylzinc is used as a dopant precursor. Specifically, using in situ optical reflectometry and high-resolution transmission electron microscopy we show that the doping results in a smaller nanowire diameter, a more predominant zincblende crystal structure, a more Ga-rich composition, and an increased axial growth rate. We attribute these effects to changes in seed particle wetting angle and increased TMGa pyrolysis efficiency upon introducing diethylzinc. Lastly, we demonstrate degenerate p-doping levels in InGaP nanowires by the realization of an Esaki tunnel diode. Our findings provide insights into the growth dynamics of ternary alloy nanowires during doping, thus potentially enabling the realization of such nanowires with high compositional homogeneity and controlled doping for high-performance optoelectronics devices.
Semiconductor nanowires have great potential for realizing broadband photodetectors monolithically integrated with silicon. However, the spectral range of such detectors has so far been limited to selected regions in the ultraviolet, visible, and near-infrared regions. Here, we report on the first intersubband nanowire heterostructure array photodetectors exhibiting a spectrally resolved photoresponse from the visible to long-wavelength infrared. In particular, the infrared response from 3 to 20 μm is enabled by intersubband transitions in low-bandgap InAsP quantum discs synthesized axially within InP nanowires. The intriguing optical characteristics, including unexpected sensitivity to normal incident radiation, are explained by excitation of the longitudinal component of optical modes in the photonic crystal formed by the nanostructured portion of the detectors. Our results provide a generalizable insight into how broadband nanowire photodetectors may be designed and how engineered nanowire heterostructures open up new, fascinating opportunities for optoelectronics.
Semiconductor nanowire solar cells with single p-n junction have achieved comparable efficiency to their planar counterparts with substantial reduction of material consumption. Tandem geometry is a path towards even higher efficiency, for which a key step towards realizing such a device is the fabrication of tunnel (Esaki) diodes within nanowires with correct diameter, pitch, and material combination for maximized efficiency. We have fabricated, characterized and compared the electrical characteristics and material properties of InP/GaInP and GaInP/InP nanowire tunnel diodes with band gap combinations corresponding to high efficiency solar energy harvesting. Four different configurations with respect to material composition and doping were investigated. The nanowire arrays were grown with Metal Organic Vapor Phase Epitaxy from Au particles defined by use of nano imprint lithography, metal evaporation and lift-off. Electrical measurements show that the NWs behave as tunnel diodes in both InP (bottom)/GaInP (top) and GaInP (bottom)/InP (top) configurations, exhibiting a maximum peak current density of 25 A/cm 2 , and maximum peak to valley current ratio of 2.5 at room temperature. The realization of NW tunnel diodes in both InP/GaInP and GaInP/InP configurations open up an opportunity for NW tandem solar cells independent of the growth order of the different materials, opening up for flexibility regarding dopant incorporation polarity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.