a b s t r a c tFlows in which shock waves and turbulence are present and interact dynamically occur in a wide range of applications, including inertial confinement fusion, supernovae explosion, and scramjet propulsion. Accurate simulations of such problems are challenging because of the contradictory requirements of numerical methods used to simulate turbulence, which must minimize any numerical dissipation that would otherwise overwhelm the small scales, and shock-capturing schemes, which introduce numerical dissipation to stabilize the solution. The objective of the present work is to evaluate the performance of several numerical methods capable of simultaneously handling turbulence and shock waves. A comprehensive range of high-resolution methods (WENO, hybrid WENO/central difference, artificial diffusivity, adaptive characteristic-based filter, and shock fitting) and suite of test cases (Taylor-Green vortex, Shu-Osher problem, shock-vorticity/entropy wave interaction, Noh problem, compressible isotropic turbulence) relevant to problems with shocks and turbulence are considered. The results indicate that the WENO methods provide sharp shock profiles, but overwhelm the physical dissipation. The hybrid method is minimally dissipative and leads to sharp shocks and well-resolved broadband turbulence, but relies on an appropriate shock sensor. Artificial diffusivity methods in which the artificial bulk viscosity is based on the magnitude of the strain-rate tensor resolve vortical structures well but damp dilatational modes in compressible turbulence; dilatation-based artificial bulk viscosity methods significantly improve this behavior. For well-defined shocks, the shock fitting approach yields good results.
This paper is the first part of a two-part study on the mechanisms of the receptivity to disturbances of a Mach 4.5 flow over a flat plate by using both direct numerical simulations (DNS) and linear stability theory (LST). The main objective of the current paper is to study the linear stability characteristics of the boundary-layer wave modes and their mutual resonant interactions. The numerical solutions of both steady base flow and unsteady flow induced by forcing disturbances are obtained by using a fifth-order shock-fitting method. Meanwhile, the LST results are used to study the supersonic boundary-layer stability characteristics relevant to the receptivity study. It is found that, in addition to the conventional first and second modes, there exist a family of stable wave modes in the supersonic boundary layer. These modes play a very important role in the receptivity process of excitation of the unstable Mack modes, especially the second mode. These stable modes are termed mode I, mode II, etc., in this paper. Though mode I and mode II waves are linearly stable, they can have resonant (synchronization) interactions with both acoustic waves and the Mack-mode waves. Therefore, the stable wave modes such as mode I and mode II are critical in transferring wave energy between the acoustic waves and the unstable second mode. The effects of frequencies and wall boundary conditions for the temperature perturbations on the boundary-layer stability and receptivity are also studied.
In this paper, we continue to study the mechanisms of the receptivity of the supersonic boundary layer to free-stream disturbances by using both direct numerical simulation and linear stability theory. Specifically, the receptivity of a Mach 4.5 flow over a flat plate to free-stream fast acoustic waves is studied. The receptivity to free-stream slow acoustic waves, entropy waves and vorticity waves will be studied in the future. The oblique shock wave induced by the boundary-layer displacement plays an important role in the receptivity because the free-stream disturbance waves first pass through the shock before entering the boundary layer. A high-order shock-fitting scheme is used in the numerical simulations in order to account for the effects of interactions between free-stream disturbance waves and the oblique shock wave. The results show that the receptivity of the flat-plate boundary layer to free-stream fast acoustic waves leads to the excitation of both Mack modes and a family of stable modes, i.e. mode I, mode II, etc. It is found that the forcing fast acoustic waves do not interact directly with the unstable Mack modes. Instead, the stable mode I waves play an important role in the receptivity process because they interact with both the forcing acoustic waves and the unstable Mack-mode waves. Through the interactions, the stable mode I waves transfer wave energy from the forcing fast acoustic waves to the second Mack-mode waves. The effects of incident wave angles, forcing wave frequencies, and wall temperature perturbation conditions on the receptivity are studied. The results show that the receptivity mechanisms of the second mode are very different from those of modes I and II, which leads to very different receptivity properties of these discrete wave modes to free-stream fast acoustic waves with different incident wave angles, frequencies, and different wall boundary conditions. The maximum receptivities of the second mode, mode I and mode II to planar free-stream fast acoustic waves are obtained when incident wave angles approximately equal 26 • , 45 • , and 18 • , respectively. The results of receptivity to a beam of free-stream fast acoustic waves show that the leading edge is one of the most efficient regions for receptivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.