Despite significant advances in intensive care therapy and antibiotics, severe sepsis accounts for 9% of all deaths in the United States annually. The pathological sequelae of sepsis are characterized by a systemic inflammatory response, but experimental therapeutics that target specific early inflammatory mediators [tumor necrosis factor (TNF) and IL-1] have not proven efficacious in the clinic. We recently identified high mobility group box 1 (HMGB1) as a late mediator of endotoxin-induced lethality that exhibits significantly delayed kinetics relative to TNF and IL-1. Here, we report that serum HMGB1 levels are increased significantly in a standardized model of murine sepsis, beginning 18 h after surgical induction of peritonitis. Specific inhibition of HMGB1 activity [with either anti-HMGB1 antibody (600 g per mouse) or the DNAbinding A box (600 g per mouse)] beginning as late as 24 h after surgical induction of peritonitis significantly increased survival (nonimmune IgG-treated controls ؍ 28% vs. anti-HMGB1 antibody group ؍ 72%, P < 0.03; GST control protein ؍ 28% vs. A box ؍ 68%, P < 0.03). Animals treated with either HMGB1 antagonist were protected against the development of organ injury, as evidenced by improved levels of serum creatinine and blood urea nitrogen. These observations demonstrate that specific inhibition of endogenous HMGB1 therapeutically reverses lethality of established sepsis indicating that HMGB1 inhibitors can be administered in a clinically relevant time frame.
Excessive production of proinflammatory mediators is observed in patients undergoing hemorrhagic and septic shock. Here, we report the detection of cold-inducible RNA-binding protein (CIRP) in the blood of surgical ICU individuals. In animal models of hemorrhage and sepsis, CIRP is up-regulated in several organs and released into the circulation. Under hypoxic stresses, CIRP in macrophages is translocated from the nucleus to the cytosol and actively released. Recombinant CIRP stimulates TNF-α and HMGB1 release in macrophages as well as induces inflammatory responses and causes tissue injury in animals. Antisera to CIRP attenuate shock-induced inflammation, tissue injury, and lethality. Extracellular CIRP's activity is mediated through the TLR4/MD2 complex. Surface plasmon resonance analysis indicates that CIRP binds to the TLR4/MD2 complex as well as to individual TLR4 and MD2. The human CIRP amino-acid segment 106-125 binds to MD2 with high affinity. Collectively, CIRP is a new proinflammatory mediator of shock.
Fetuin inhibits insulin-induced insulin receptor (IR)autophosphorylation and tyrosine kinase activity in vitro, in intact cells, and in vivo. The fetuin gene (AHSG) is located on human chromosome 3q27, recently identified as a susceptibility locus for type 2 diabetes and the metabolic syndrome. Here, we explore insulin signaling, glucose homeostasis, and the effect of a high-fat diet on weight gain, body fat composition, and glucose disposal in mice carrying two null alleles for the gene encoding fetuin, Ahsg (B6, 129-Ahsg tm1Mbl ). Fetuin knockout (KO) mice demonstrate increased basal and insulin-stimulated phosphorylation of IR and the downstream signaling molecules mitogen-activated protein kinase (MAPK) and Akt in liver and skeletal muscle. Glucose and insulin tolerance tests in fetuin KO mice indicate significantly enhanced glucose clearance and insulin sensitivity. Fetuin KO mice subjected to euglycemic-hyperinsulinemic clamp show augmented sensitivity to insulin, evidenced by increased glucose infusion rate (P ؍ 0.077) and significantly increased skeletal muscle glycogen content (P < 0.05). When fed a high-fat diet, fetuin KO mice are resistant to weight gain, demonstrate significantly decreased body fat, and remain insulin sensitive. These data suggest that fetuin may play a significant role in regulating postprandial glucose disposal, insulin sensitivity, weight gain, and fat accumulation and may be a novel therapeutic target in the treatment of type 2 diabetes, obesity, and other insulin-resistant conditions. Diabetes 51:2450 -2458, 2002
High mobility group box 1 (HMGB1), a ubiquitous DNA-binding protein, has been implicated as a proinflammatory cytokine and late mediator of lethal endotoxemia. HMGB1 is released by activated macrophages. It amplifies and extends the inflammatory response by inducing cytokine release and mediating acute lung injury, anorexia, and the inflammatory response to tissue necrosis. The kinetics of HMGB1 release provide a wide therapeutic window for endotoxemia because extracellular levels of HMGB1 begin to increase 12 to 24 h after exposure to inflammatory stimuli. Here, we demonstrate that a DNA-binding domain of HMGB1, the B box, recapitulates the cytokine activity of full length HMGB1 and efficiently activates macrophages to release tumor necrosis factor (TNF) and other proinflammatory cytokines. Truncation of the B box revealed that the TNF-stimulating activity localizes to 20 amino acids (HMGB1 amino acids 89 to 108). Passive immunization of mice with antibodies raised against B box conferred significant protection against lethal endotoxemia or sepsis, induced by cecal perforation. These results indicate that a proinflammatory domain of HMGB1 maps to the highly conserved DNAbinding B box, making this primary sequence a suitable target in the design of therapeutics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.