Medical care has become an indispensable part of people's lives, with a dramatic increase in the volume of medical data (e.g., diagnosis certificates and medical records). Medical data, however, is easily stolen, tampered with, or even completely deleted. If the above occurs, medical data cannot be recorded or retrieved in a reliable manner, resulting in delay treatment progress, even endanger the patient's life. In this paper, we propose a novel blockchain-based data preservation system (DPS) for medical data. To provide a reliable storage solution to ensure the primitiveness and verifiability of stored data while preserving privacy for users, we leverage the blockchain framework. With the proposed DPS, users can preserve important data in perpetuity, and the originality of the data can be verified if tampering is suspected. In addition, we use prudent data storage strategies and a variety of cryptographic algorithms to guarantee user privacy; e.g., an adversary is unable to read the plain text even if the data are stolen. We implement a prototype of the DPS based on the real world blockchain-based platform Ethereum. Performance evaluation results demonstrate the effectiveness and efficiency of the proposed system.
With the rapid development of cloud storage, more and more resource-constraint data owners can employ cloud storage services to reduce the heavy local storage overhead. However, the local data owners lose the direct control over their data, and all the operations over the outsourced data, such as data transfer and deletion, will be executed by the remote cloud server. As a result, the data transfer and deletion have become two security issues because the selfish remote cloud server might not honestly execute these operations for economic benefits. In this article, we design a scheme that aims to make the data transfer and the transferred data deletion operations more transparent and publicly verifiable. Our proposed scheme is based on vector commitment (VC), which is used to deal with the problem of public verification during the data transfer and deletion. More specifically, our new scheme can provide the data owner with the ability to verify the data transfer and deletion results. In addition, by using the advantages of VC, our proposed scheme does not require any trusted third party. Finally, we prove that the proposed scheme not only can reach the expected security goals but also can satisfy the efficiency and practicality.
ANG-(1-7), through Mas receptor, activates SHP-1 in cardiac fibroblasts, which can negatively modulate ANG II-induced phosphorylation of c-Src and MAPKs, and inhibits profibrotic factors TGF-β1 and collagen production. ANG-(1-7) can thereby serve as a protective role by counteracting the effects of ANG II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.