Because of regulatory actions and public concerns, the use of bisphenol A (BPA) may decrease, while the use of BPA alternatives may increase. Although BPA alternatives are considered safer than BPA, their effects on health are still largely unknown. For risk assessment, understanding exposure to these chemicals is necessary. We measured the urinary concentrations of BPA and three bisphenol analogs, bisphenol S (BPS), bisphenol F (BPF), and bisphenol AF (BPAF), in 616 archived samples collected from convenience samplings of U.S. adults at eight time points between 2000 and 2014. We detected BPA at the highest frequency and geometric mean (GM) concentrations (74-99%, 0.36-2.07 μg/L), followed by BPF (42-88%, 0.15-0.54 μg/L) and BPS (19-74%, < 0.1-0.25 μg/L); BPAF was rarely detected (<3% of all samples). Although concentrations of BPF were generally lower than for other bisphenols, the 95th percentile concentration of BPF was often comparable or higher than that of BPA. We did not observe obvious exposure trends for BPF. However, the significant changes in GM concentrations of BPA and BPS suggest that exposures may be declining (BPA) or on the rise (BPS). Nationally representative data will be useful to confirm these findings and to allow monitoring future exposure trends to BPA and some of its bisphenol alternatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.