In this article, we proposed a noncontact testing scheme for micrometer to sub-micrometer level ultrasonic vibration mainly generated by laser ultrasound upon the novel utilization of near-field microwaves. The measurement was performed based on a Ku-band near-field resonator-probe, which was optimized to perceive the low amplitude out-of-plane vibration in the ultrasonic range. A near-field electromagnetic measurement theory was established to help analyze the sensitivity and responsivity of the resonator-probe outfit. The electric field parameters were extracted with respect to the port based on a lumped-circuit model, which was further validated using a finite-element model. Experiments were carried out with respect to a piezoelectric ceramic disk designed to generate vibrations of desired amplitude, which is compatible to that in laser ultrasonic testing. The accuracy of the technique was assessed by comparing with the laser vibrometer measurement results. It was verified that the proposed near-field microwave probe can achieve considerable accuracy in perceiving sub-micrometer ultrasonic vibration up to 180 kHz.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.