Chitosan is a naturally derived polymer with applications in a variety of industrial and biomedical fields. Recently, it has emerged as a promising material for biological functionalization of microelectromechanical systems (bioMEMS). Due to its unique chemical properties and film forming ability, chitosan serves as a matrix for the assembly of biomolecules, cells, nanoparticles, and other substances. The addition of these components to bioMEMS devices enables them to perform functions such as specific biorecognition, enzymatic catalysis, and controlled drug release. The chitosan film can be integrated in the device by several methods compatible with standard microfabrication technology, including solution casting, spin casting, electrodeposition, and nanoimprinting. This article surveys the usage of chitosan in bioMEMS to date. We discuss the common methods for fabrication, modification, and characterization of chitosan films, and we review a number of demonstrated chitosan-based microdevices. We also highlight the advantages of chitosan over some other functionalization materials for micro-scale devices.
Neuroblastoma xenografts are highly sensitive to topotecan therapy, and responses in mice are achieved at systemic exposures similar to those that are clinically effective and tolerable in children. These results support the concept of deriving preclinical data relating systemic exposure to antitumor activity in xenograft models. Such data may be valuable in making informed decisions regarding the clinical development of new agents.
Stimuli-responsive polysaccharides that can undergo a sol-gel transition in response to localized electrical signals provide a unique opportunity to electroaddress biological components at device interfaces. Most polysaccharide electroaddressing mechanisms use electrochemical reactions to generate pH gradients that can locally neutralize the polysaccharide and induce its reversible sol-gel transition to form a hydrogel film adjacent to the electrode surface. The calcium-responsive polysaccharide alginate is an exception; it may electrodeposit without requiring extreme pH gradients and thus may provide a means to electroaddress pH-sensitive biological components. Here, we use a novel device to characterize the mechanism for the anodic electrodeposition of a calcium alginate hydrogel. This device consists of a transparent fluidic channel with built-in sidewall electrodes that allows Ca-alginate electrodeposition to be directly measured by non-destructive optical and spectroscopic methods. We hypothesize a 3-step mechanism for calcium-alginate electrodeposition: (i) water is electrolyzed to locally generate protons (or hydronium ions); (ii) these protons are consumed by reacting with suspended CaCO 3 particles and this ''buffering'' reaction generates a gradient in soluble Ca 2+ ; and (iii) the locally generated Ca 2+ ions interact with alginate to induce its sol-gel transition. We verified this electrodeposition mechanism using pH-responsive dyes to observe the local pH gradients during gel formation, Ca 2+ indicator dyes to observe the Ca 2+ gradient, and in situ Raman spectroscopy to demonstrate a strong interaction between soluble Ca 2+ and alginate. Importantly, these results demonstrate electrodeposition without the need for a substantial pH excursion from neutrality. Thus, calcium alginate appears especially well-suited for electroaddressing labile biological components for applications in biosensors, biofabrication and BioMEMS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.