ABSTRACT:Cache replacement strategy is the core for a distributed high-speed caching system, and effects the cache hit rate and utilization of a limited cache space directly. Many reports show that there are temporal and spatial local changes in access patterns of geospatial data, and there are popular hot spots which change over time. Therefore, the key issue for cache replacement strategy for geospatial data is to get a combination method which considers both temporal local changes and spatial local changes in access patterns, and balance the relationship between the changes. And the cache replacement strategy should fit the distribution and changes of hotspot. This paper proposes a cache replacement strategy based on access pattern which have access spatiotemporal localities. Firstly, the strategy builds a method to express the access frequency and the time interval for geospatial data access based on a least-recently-used replacement (LRU) algorithm and its data structure; secondly, considering both the spatial correlation between geospatial data access and the caching location for geospatial data, it builds access sequences based on a LRU stack, which reflect the spatiotemporal locality changes in access pattern. Finally, for achieving the aim of balancing the temporal locality and spatial locality changes in access patterns, the strategy chooses the replacement objects based on the length of access sequences and the cost of caching resource consumption.Experimental results reveal that the proposed cache replacement strategy is able to improve the cache hit rate while achieving a good response performance and higher system throughput. Therefore, it can be applied to handle the intensity of networked GISs data access requests in a cloud-based environment.
With the development of ocean exploration technology and the rapid growth in the amount of marine science observation data, people are faced with a great challenge to identify valuable data from the massive ocean observation data. A recommendation system is an effective method to improve retrieval capabilities to help users obtain valuable data. The two most popular recommendation algorithms are collaborative filtering algorithms and content-based filtering algorithms, which may not work well for marine science observation data given the complexity of data attributes and lack of user information. In this study, an approach was proposed based on data similarity and data correlation. Data similarity was calculated by analyzing the subject, source, spatial, and temporal attributes to obtain the recommendation list. Then, data correlation was calculated based on the literature on marine science data and ranking of the recommendation list to obtain the re-rank recommendation list. The approach was tested by simulated datasets collected from multiple marine data sharing websites, and the result suggested that the proposed method exhibits better effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.