In order to improve the force performance of traditional anti-buckling energy dissipation bracing with excessive non-recoverable deformation caused by strong seismic action, this paper presents a prestress-braced frame structure system with shape memory alloy (SMA) and investigates its deformation characteristics under a horizontal load. Firstly, this paper establishes a theoretical analysis model by analyzing the geometric relationship between the deformation of SMA cables and inter-story displacement based on the internal force balance equation. The model is used to solve the anti-lateral displacement stiffness of the SMA cable-supported frame structure and to derive a reasonable formula for calculating the initial prestress and cross-sectional area of SMA cables. Then, the mechanical behavior of the SMA cable-supported frame structure system under an equivalent horizontal load is simulated using ABAQUS software and compared with the calculated results of conventional tie-supported and non-dissipative-supported frame structures. The results show that the force performance of the frame structure system determined by the SMA cable design method proposed in this paper is significantly improved under the horizontal load. Furthermore, it can ensure a certain ductility requirement of the frame structure system, which verifies the effectiveness of the design method of the SMA cable frame structure system proposed in this paper.
In the construction process of large-scale bridges, there are uncertainties and time-varying factors in the environment and construction loads. It is difficult to make accurate estimates of the theoretical calculation models of construction control in advance. In view of this situation, Bayesian dynamic updating method is introduced to re-estimate the predicted results of the theoretical model. When applying this method, first, the finite element calculation model is determined based on the response surface method, and its calculation results are used as prior information. Then, combined with the actual detection data during the construction process, the Bayesian update formula is derived based on the conjugate prior distribution to correct the theoretical prediction results of bridge construction monitoring. Finally, the actual stress detection data of the control section of high-pier and large-span continuous rigid frame bridges during the construction process illustrate the application process of Bayesian updating in improving the theoretical prediction model. Results indicate that the internal force of the bridge control section obtained by re-evaluating by Bayesian theory not only incorporates the priori information models but also actual monitors sample information during the construction process. The predicted results reflect the true deformation and stress state of the bridge during the bridge construction process and improve the precision of construction monitoring.
To explore the applicability of steel slag porous asphalt mixture, the interaction capability and microscopic interfacial mechanism between asphalt-binder and steel slag aggregate-filler were investigated in this laboratory study. These objectives were accomplished by comparing and analyzing the differences between steel slag and basalt aggregates in interacting with the asphalt-binder. The study methodology involved preparing basalt and steel slag asphalt mortar to evaluate the penetration, ductility, softening point, toughness, and tenacity. Thereafter, the interaction capability between the asphalt-binder and aggregates was characterized using the interaction parameters of the asphalt mortar obtained from dynamic shear rheometer (DSR) testing. For studying the functional groups and chemical bonding of the asphalt mortar, the Fourier Transform infrared (FTIR) spectrometer was used, whilst the interfacial bonding between the asphalt-binder and aggregates was analyzed using the scanning electron microscope (SEM). The corresponding test results indicated that the physical and rheological properties of the two asphalt mortars were similar. However, whilst the FTIR analysis indicated domination through chemical reactions, the interaction capability and interfacial bonding between the asphalt-binder and steel slag aggregates exhibited superiority over that between the asphalt-binder and basalt aggregates, with pronounced adsorption peaks appearing in the steel slag asphalt mortar spectrum. On the other hand, the SEM test revealed that, compared with the basalt, the micro-interfacial phases between the steel slag and asphalt-binder were more continuous and uniform, which could potentially enhance the interfacial bond strength between the asphalt-binder and aggregates (filler).
This laboratory study was conducted to comparatively assess the effects of different fillers and moisture on the mechanical properties and performance of asphalt mixtures. In the study, a typical Pen70 base asphalt was modified with four different filler materials, namely limestone powder, cement, slaked (hydrated) lime, and brake pad powder, to produce different asphalt mortars that were subsequently used to prepare the asphalt mixtures. Thereafter, various laboratory tests, namely dynamic uniaxial repeated compressive loading, freeze-thaw splitting, and semicircular bending (SCB) were conducted to evaluate the moisture sensitivity, high-temperature stability, low-temperature cracking, and fatigue performance of the asphalt mixtures before and after being subjected to water saturation conditions. Overall, the study results indicated superior moisture tolerance, water damage resistance, and performance for slaked (hydrated) lime, consecutively followed by brake pad powder, cement, and limestone powder. That is, for the materials evaluated and the laboratory test conditions considered, limestone mineral powder was found to be the most moisture-sensitive filler material, whilst slaked (hydrated) lime was the most moisture-tolerant and water-damage resistant filler material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.