The loss of ITGA2 plays an important role in cancer metastasis in several solid cancers. However, the molecular mechanism of ITGA2 loss in primary cancers remains unclear. In this study, we found that a lower ITGA2 protein level was observed in breast cancers compared to adjacent non-cancerous breast tissues. Interestingly, the reduction degree of ITGA2 at the protein level was far more than that at the mRNA level. We further showed that the translation of ITGA2 mRNA was directly inhibited by miR-373 through binding to ITGA2-3’UTR. Silencing of ITGA2 detached cell-cell interactions, induced the deploymerization of stress fiber F-actin and stimulated cancer cell migration, similar to the effect of miR-373 over-expression. The co-expression of ITGA2, not ITGA2-3’UTR, could abrogate miR-373-induced cancer cell migration because that the expression of ITGA2-3’UTR was inhibited by co-transfected miR-373. ITGA2 protein level was inversely associated with miR-373 level in breast cancers (r = -0.663, P<0.001). 73.33% of breast cancer patients with high miR-373 and low ITGA2 expression exhibited the lymph node-positive metastases. Together, our results show that epigenetic silencing of ITGA2 by miR-373 stimulates breast cancer migration, and miR-373high/ITGA2low may be as a prognosis biomarker for breast cancer patients.
In response to blue light, cryptochromes photoexcite and interact with signal partners to transduce signal almost synchronously in plants. The detailed mechanism of CRY-mediated light signaling remains unclear: the photobiochemical reactions of cryptochrome are transient and synchronous, thus making the monitoring and analysis of each step difficult in plant cells. In this study, we reconstituted the Arabidopsis CRY2 signaling pathway in mammalian cells and investigated the biological role of Arabidopsis CRY2 in this heterologous system, eliminating the interferences of other plant proteins. Our results demonstrated that, besides being the light receptor, Arabidopsis CRY2 binds to DNA directly and acts as a transcriptional activator in a blue-light-enhanced manner. Similar to classic transcription factors, we found that the transcriptional activity of CRY2 is regulated by its dimerization and phosphorylation. In addition, CRY2 cooperates with CIB1 to regulate transcription by enhancing the DNA affinity and transcriptional activity of CIB1 under blue light.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.