Nano-sized hydroxyapatite (HA) powders were produced by a hydrothermal method and a precipitation method. Spark plasma sintering (SPS) was used to fabricate nanostructured HA (NHA) using nano-sized HA powders as a precursor. Conventional sintering was employed to produce microstructured HA (MHA). Characteristics of HA powders and HA bulk ceramics after sintering were investigated by XRD, FTIR, SEM, TEM, particle size distribution, and AFM. Dense compacts consisting of equiaxed grains with an average grain size of approximately 100 nm were obtained by SPS. Human osteoblasts were cultured on both NHA and MHA and cell attachment, proliferation, and mineralization were evaluated. After 90 min incubation, the cell density on NHA surface was significantly higher than that of MHA and glass control, whereas average cell area of a spread cell was significantly lower on NHA surface compared to MHA and glass control after 4 h incubation. Matrix mineralization was determined after 7 and 14 days incubation by using alizarin red assay combined with cetylpyridinium chloride extraction. NHA shows significant enhancement (p < 0.05) in mineralization compared to MHA. Results from this study suggest that NHA may be a much better candidate for clinical use in terms of bioactivity.
A novel near-infrared (NIR)-responsive photocatalyst, β-NaYF4:Yb(3+),Tm(3+)@ZnO composites, was prepared by a two-step high temperature thermolysis method. In the NIR-responsive photocatalysis, β-NaYF4:Yb,Tm served as a NIR-to-UV upconverter and provided "UV light" or "necessary energy" to the ZnO catalyst. The energy transfer in the composites and the mixtures of β-NaYF4:Yb,Tm and ZnO was studied by using steady-state and dynamic fluorescence spectroscopy. The NIR photocatalytic activities were investigated by the decomposition of Rhodamine B. It was found that the energy transfer processes dominated the overall photocatalytic activities, and the generation of hydroxyl radicals was the origin of organic pollutant decomposition under NIR irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.