Summary
Covalent organic frameworks (COFs) are a new type of crystalline porous polymers known for chemical stability, excellent structural regularity, robust framework, and inherent porosity, making them promising materials for capturing various types of pollutants from aqueous solutions. This review thoroughly presents the recent progress and advances of COFs and COF-based materials as superior adsorbents for the efficient removal of toxic heavy metal ions, radionuclides, and organic pollutants. Information about the interaction mechanisms between various pollutants and COF-based materials are summarized from the macroscopic and microscopic standpoints, including batch experiments, theoretical calculations, and advanced spectroscopy analysis. The adsorption properties of various COF-based materials are assessed and compared with other widely used adsorbents. Several commonly used strategies to enhance COF-based materials’ adsorption performance and the relationship between structural property and sorption ability are also discussed. Finally, a summary and perspective on the opportunities and challenges of COFs and COF-based materials are proposed to provide some inspiring information on designing and fabricating COFs and COF-based materials for environmental pollution management.
Anatase TiO(2) microspheres with exposed mirror-like plane {001} facets were successfully synthesized via a facile hydrothermal process. The photoanode composed of TiO(2) microsphere top layer shows an improved DSSCs efficiency owing to the superior light scattering effect of microspheres and excellent light reflecting ability of the mirror-like plane {001} facets.
The clinical characteristics and outcomes of Chinese patients with sporadic ALS were different compared with patients from other countries. Compared with other studies, the age at onset of Chinese patients was earlier, the percentage of bulbar-onset ALS was lower and the prognosis was better. This study substantially advances the understanding of the clinical features and epidemiology of this rare disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.