COVID-19 is a disease with heterogeneous clinical appearances. Most patients are asymptomatic or exhibit mild to moderate symptoms; approximately 15% progress to severe pneumonia and about 5% are eventually admitted to the intensive care unit (ICU) due to acute respiratory distress syndrome (ARDS), septic shock and/ or multiple organ failure. ICU patients respond poorly to currently available treatments and exhibit a high mortality rate. 1-3 Inadequate identification of the determinants of fatal outcomes is one of the major obstacles to the improvement of the outcomes in severe COVID-19 patients. A previous study reported a scoring system (COVID-GRAM) which accurately predicted the occurrence of critical illness in hospitalized COVID-19 patients. 4 Damage-associated molecular patterns (DAMPs), or alarmins, are a number of molecules, released by stressed cells undergoing microbial infection or sterile injury, that act as danger signals to promote and exacerbate the inflammatory response. 5,6 Of note, the serum level of S100A8/A9 and HMGB1 was found to be correlated with both the severity of pathogen-associated tissue damage and excessive cytokine storm. 7 Despite the hypothesis that S100A8/A9 and HMGB1 are significantly involved in COVID-19, so far, no study has yet tried to substantiate the hypothesis. In this study, we aimed to define the role of S100A8/ A9 and HMGB1 in progression to a fatal outcome and develop clinically relevant risk strata for COVID-19 patients. A total of 121 patients were enrolled in this retrospective study, of which 40 patients were in ICU and 81 patients in general wards at enrollment (Table S1). ICU Patients had much higher COVID-GRAM risk scores in comparison to those in general wards. Complications, including ARDS, sepsis, septic shock, secondary infection, acute renal injury, acute cardiac injury or failure, were more frequent in CCOVID-19 patients admitted to ICU. As of the cutoff date of April 30, 2020, most of non-ICU patients (96.3%) had been discharged alive, while 82.5% of ICU patients had died in ICU.
Advanced central nervous system (CNS) lymphoma is an exclusion criterion for most chimeric antigen receptor (CAR) T-cell studies due to the associated levels of neurotoxicity. In this study, we described five patients with chemorefractory B-cell CNS lymphoma who received CAR19 and CAR22 T-cell “Cocktail” therapy and follow-up for 6–16 months. All patients experienced cytokine release syndrome (CRS). Two patients experienced CAR T-cell-related encephalopathy syndrome (CRES), which was controllable. The best response was observed in two patients, who successfully achieved complete remissions (CR), and the other three patients achieved partial remissions (PR). Four patients had progressive disease (PD) after remission. In addition, one CR patient and one PD patient accepted CAR T-cell infusion following hematopoietic stem cell transplantation therapy in the 3rd month and were in ongoing remission for 14 and 6 months of follow-up, respectively. The targeted antigens in two patients were still positive, and CAR T-cells were reboosted in the cerebrospinal fluid (CSF) after PD, but a small number of CD3-positive T-cells were observed to infiltrate into the tumor. Our study indicates the efficacy of CAR T-cell therapy for CNS lymphoma with an acceptable safety profile; however, the remission did not last long, perhaps due to the tumor immunosuppressive microenvironment (TME) of the CNS. CAR T-cell therapy should be combined with other treatments to help improve the TME of cerebral lymphoma.
The prevalence and clinical relevance of viremia in patients with coronavirus disease 2019 (COVID-19) are not well-studied. A prospective cohort study was designed to investigate blood viral load and clearance kinetics in 52 patients (median age, 62 years; 31 [59.6%] male) and explore their association with clinical features and outcomes based on a novel one-step reverse-transcription droplet digital PCR (RT-ddPCR). By using one-step RT-ddPCR, 92.3% (48/52) of this cohort was quantitatively detected with viremia. The concordance between the blood and oropharyngeal swab tests was 60.92% (53/87). One-step RT-ddPCR was tested with a 3.03% of false positive rate and lower 50% confidence interval of detection (LOD 50 ) at 54.026 copies/ml plasma. In all critical patients, the blood viral load was not eliminated, while the general and severe patients showed similar ability to clear the viral load. The viral loads in critical patients were significantly higher than those in general and severe counterparts. Among the 52 patients, 30 (58%) were discharged from hospital. Among half of 30 discharged patients, blood viral load remained positive, of which 76.9% (10/13) completely cleared their blood viral load at follow-up. Meanwhile, none of their close contacts had the evidence of infection. Quantitative determination of blood viral test is of great clinical significance to the management of COVID-19 patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.