The carrier concentration of the electron-selective layer (ESL) and hole-selective layer can significantly affect the performance of organic-inorganic lead halide perovskite solar cells (PSCs). Herein, a facile yet effective two-step method, i.e., room-temperature colloidal synthesis and low-temperature removal of additive (thiourea), to control the carrier concentration of SnO quantum dot (QD) ESLs to achieve high-performance PSCs is developed. By optimizing the electron density of SnO QD ESLs, a champion stabilized power output of 20.32% for the planar PSCs using triple cation perovskite absorber and 19.73% for those using CH NH PbI absorber is achieved. The superior uniformity of low-temperature processed SnO QD ESLs also enables the fabrication of ≈19% efficiency PSCs with an aperture area of 1.0 cm and 16.97% efficiency flexible device. The results demonstrate the promise of carrier-concentration-controlled SnO QD ESLs for fabricating stable, efficient, reproducible, large-scale, and flexible planar PSCs.
Despite the rapid increase of efficiency, perovskite solar cells (PSCs) still face some challenges, one of which is the current-voltage hysteresis. Herein, it is reported that yttrium-doped tin dioxide (Y-SnO ) electron selective layer (ESL) synthesized by an in situ hydrothermal growth process at 95 °C can significantly reduce the hysteresis and improve the performance of PSCs. Comparison studies reveal two main effects of Y doping of SnO ESLs: (1) it promotes the formation of well-aligned and more homogeneous distribution of SnO nanosheet arrays (NSAs), which allows better perovskite infiltration, better contacts of perovskite with SnO nanosheets, and improves electron transfer from perovskite to ESL; (2) it enlarges the band gap and upshifts the band energy levels, resulting in better energy level alignment with perovskite and reduced charge recombination at NSA/perovskite interfaces. As a result, PSCs using Y-SnO NSA ESLs exhibit much less hysteresis and better performance compared with the cells using pristine SnO NSA ESLs. The champion cell using Y-SnO NSA ESL achieves a photovoltaic conversion efficiency of 17.29% (16.97%) when measured under reverse (forward) voltage scanning and a steady-state efficiency of 16.25%. The results suggest that low-temperature hydrothermal-synthesized Y-SnO NSA is a promising ESL for fabricating efficient and hysteresis-less PSC.
Reducing the energy loss and retarding the carrier recombination at the interface are crucial to improve the performance of the perovskite solar cell (PSCs). However, little is known about the recombination mechanism at the interface of anode and SnO2 electron transfer layer (ETL). In this work, an ultrathin wide bandgap dielectric MgO nanolayer is incorporated between SnO2:F (FTO) electrode and SnO2 ETL of planar PSCs, realizing enhanced electron transporting and hole blocking properties. With the use of this electrode modifier, a power conversion efficiency of 18.23% is demonstrated, an 11% increment compared with that without MgO modifier. These improvements are attributed to the better properties of MgO‐modified FTO/SnO2 as compared to FTO/SnO2, such as smoother surface, less FTO surface defects due to MgO passivation, and suppressed electron–hole recombinations. Also, MgO nanolayer with lower valance band minimum level played a better role in hole blocking. When FTO is replaced with Sn‐doped In2O3 (ITO), a higher power conversion efficiency of 18.82% is demonstrated. As a result, the device with the MgO hole‐blocking layer exhibits a remarkable improvement of all J–V parameters. This work presents a new direction to improve the performance of the PSCs based on SnO2 ETL by transparent conductive electrode surface modification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.