The mechanism of mesenchymal stem cell therapy in acute kidney injury remains uncertain. Previous studies indicated that mesenchymal stem cells could attenuate inflammation-related organ injury by induction of regulatory T cells. Whether regulatory T-cell induction is a potential mechanism of mesenchymal stem cell therapy in ischemic acute kidney injury and how these induced regulatory T cells orchestrate local inflammation are unknown. Here we found that mesenchymal stem cells decrease serum creatinine and urea nitrogen levels, improve tubular injury, and downregulate IFN-γ production of T cells in the ischemic kidney. In addition to the lung, mesenchymal stem cells persisted mostly in the spleen. Mesenchymal stem cells increased the percentage of regulatory T cells in the spleen and the ischemic kidney. Antibody-dependent depletion of regulatory T cells blunted the therapeutic effect of mesenchymal stem cells, while coculture of splenocytes with mesenchymal stem cells caused an increase in the percentage of regulatory T cells. Splenectomy abrogated attenuation of ischemic injury, and downregulated IFN-γ production and the induction of regulatory T cells by mesenchymal stem cells. Thus, mesenchymal stem cells ameliorate ischemic acute kidney injury by inducing regulatory T cells through interactions with splenocytes. Accumulated regulatory T cells in ischemic kidney might be involved in the downregulation of IFN-γ production.
Anti-Thy1 nephritis is a well-established experimental mesangial proliferative nephritis model. Exploring the molecular mechanisms of pathophysiology in anti-Thy1 nephritis may elucidate the pathogeneses of mesangial proliferation. We examined the roles and acting mechanisms of differentially expressed proteins (DEPs) by bioinformatics analysis of glomeruli proteomic profiles during the course of anti-Thy1 nephritis. In total, 108 DEPs were found by two-dimensional fluorescence difference gel electrophoresis (2D-DIGE), and 40 DEPs were identified by matrix-assisted laser desorption ionization/time of flight and liquid chromatography-MS. DEPs were classified into five clusters (Clusters 1-5), according to their expression trends using Cluster 3.0 software, involved in regulating biological processes such as the stress response, cell proliferation, apoptosis, energy metabolism, transport, and the actin cytoskeleton. The expression patterns of ten DEPs, distributed across five clusters, including AKR1A1, AGAT, ATP6V1B2, HIBADH, MDH1, MPST, NIT2, PRDX6, PSMB7, and TPI1, were validated by Western blotting. Based on Western blotting and immunohistochemistry, we also found that the DEP FHL2, which was primarily expressed in the mesangial region, was downregulated on days 3 and 5, and up-regulated on day 10. In vitro, we found that FHL2 overexpression induced mesangial cell proliferation by increasing the number of Sphase cells and decreasing G2/M-phase cells, whereas inhibiting FHL2 had the opposite effect. This study explored novel DEPs and their expression patterns during anti-Thy1 nephritis, and elucidated FHL2's effect on mesangial cell proliferation. These results will contribute to our understanding of the pathogenesis of mesangial proliferation. Molecular & Cellular Proteomics 11: 10.1074/mcp.M111.008755, 1-13, 2012.Mesangial proliferative glomerulonephritis (MesPGN) 1 is the most common chronic kidney disease and is characterized by pathological changes in mesangial cell proliferation and extracellular matrix accumulation. As an important cause of end-stage renal disease, MesPGN has been a major focus of renal disease research. Examining the molecular mechanisms of MesPGN may elucidate its pathogenesis and thereby facilitate the development of clinical treatments. Animal models, such as rat anti-Thy1 nephritis, provide a useful tool to explore these mechanisms.Anti-Thy1 nephritis is a well-established model of mesangial proliferative glomerulonephritis with two major physiological phases (1): the mesangial proliferative phase (e.g. 5 and 7 days after anti-Thy1 antibody injection) and the recovery phase (e.g. 10 and 14 days after anti-Thy1 antibody injection). Biological functions such as stress (2), cytokine action (3, 4), cell proliferation (5, 6), and apoptosis (7, 8) mediate these changes in pathology during the process of anti-Thy1 nephritis. Many proteins have been reported to be involved in regulating these biological functions. For example, Porst (9) reported that fibrillin-1 may regulate mesangial cell ...
Background/Aims: During the disease process of mesangial proliferative glomerulonephritis, the expression of various factors that influence mesangial proliferation is altered. MAX interactor 1 (Mxi1) antagonizes the transcription factor Myc and is believed to be a tumor suppressor. However, no studies have investigated its effect on mesangial cell proliferation. Methods: To investigate the effect of Mxi1 on renal mesangial cell proliferation, we established a classic rat anti-Thy1 mesangial proliferative glomerulonephritis model. Mesangial proliferation was estimated by immunohistochemical analysis of Ki67. Mxi1 expression at each time point was assessed by real-time RT-PCR and Western blot analyses. Furthermore, we altered the expression level of Mxi1 by a plasmid and siRNA to detect its effect on rat mesangial cell proliferation in vitro. Results: Mxi1 expression decreased significantly during the proliferative period of anti-Thy1 nephritis model and then gradually increased as proliferation declined, indicating that Mxi1 may be linked to mesangial cell proliferation. Upregulation of Mxi1 expression via plasmid transfection in vitro reduced the expression of the positive-acting cell cycle regulatory proteins cyclin B1, cyclin D1, cyclin E, CDC2 and CDK2; significantly reduced mesangial cell proliferation; reduced the percentage of S phase cells; and increased the percentage of G2/M phase cells. Inhibition of Mxi1 expression by siRNA in vitro produced the opposite effects: increased expression of cyclin B1, cyclin D1, cyclin E, CDC2 and CDK2; markedly increased cell proliferation; higher percentage of S phase cells; and dramatically lower percentage of G2/M phase cells. Transcription factor c-myc protein expression showed no obvious difference after Mxi1 plasmid and siRNA transfection. The expressions of cell cycle regulatory proteins mentioned above were negative correlated with Mxi1 expression in anti-Thy1 nephritis model. Conclusion: These results suggest that Mxi1 expression levels were inversely correlated with proliferation in anti-Thy1 nephritis rats and it may influence cell cycle progression and thus the rate of mesangial cell proliferation by regulating the expression of c-myc target cell cycle regulatory proteins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.