Ethylene is widely used in the petrochemical industry and has traditionally been produced via the steam cracking of petroleum-based feedstock. The exploration of sustainable and carbon-neutral methods of producing ethylene from the renewable feedstock seems promising. The direct photosynthetic production of ethylene after the recycling of carbon dioxide shows great potential. In this study, continuous and stable ethylene production was achieved in Synechocystis sp. PCC 6803 by introducing a codonoptimized ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. sesami and using 2-oxoglutarate (2-OG) as the substrate. Based on diverse promoter screening, PcpcB was proved to be a highly efficient promoter for ethylene production in cyanobacteria. The genes encoding 2-OG decarboxylase (OGDC) and succinic semialdehyde dehydrogenase (SSADH) in the tricarboxylic acid (TCA) cycle in Synechocystis sp. PCC 6803 were identified, and the TCA cycle was genetically modified by blocking these two enzymes with the simultaneous overexpression of EFE. Meanwhile, a gene encoding 2-OG permease (KgtP) from E. coli was introduced into the phaAB loci to increase the 2-OG supply. A peak volumetric production rate of 9.7 mL L −1 h −1 for ethylene was eventually achieved in the Synechocystis recombinant (XX110), with the genetic modification of the TCA cycle and heterologous expression of 2-oxoglutarate permease by the modified semi-continuous cultivation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.