Plant biological processes, such as growth and metabolism, hormone signal transduction, and stress responses, are affected by gene transcriptional regulation. As gene expression regulators, transcription factors activate or inhibit target gene transcription by directly binding to downstream promoter elements. DOF (DNA binding with One Finger) is a classic transcription factor family exclusive to plants that is characterized by its single zinc finger structure. With breakthroughs in taxonomic studies of different species in recent years, many DOF members have been reported to play vital roles throughout the plant life cycle. They are not only involved in regulating hormone signals and various biotic or abiotic stress responses but are also reported to regulate many plant biological processes, such as dormancy, tissue differentiation, carbon and nitrogen assimilation, and carbohydrate metabolism. Nevertheless, some outstanding issues remain. This article mainly reviews the origin and evolution, protein structure, and functions of DOF members reported in studies published in many fields to clarify the direction for future research on DOF transcription factors.
Dormancy regulation is the basis of the sustainable development of the lily industry. Therefore, basic research on lily dormancy is crucial for the innovation of lily cultivation and breeding. Previous studies revealed that dormancy release largely depends on abscisic acid (ABA) degradation. However, the key genes and potential regulatory network remain unclear. We used exogenous ABA and ABA inhibitors to elucidate the effect of ABA on lily dormancy. Based on the results of weighted gene coexpression network analysis (WGCNA), the hub gene LdXERICO was identified in modules highly related to endogenous ABA, and a large number of coexpressed genes were identified. LdXERICO was induced by exogenous ABA and expressed at higher levels in tissues with vigorous physiological activity. Silencing LdXERICO increased the low-temperature sensitivity of bulblets and accelerated bulblet sprouting. LdXERICO rescued the ABA insensitivity of xerico mutants during seed germination in Arabidopsis, suggesting that it promotes seed dormancy and supporting overexpression studies on lily bulblets. The significant increase in ABA levels in transgenic Arabidopsis expressing LdXERICO indicated that LdXERICO played a role by promoting ABA synthesis. We generated three transgenic lines by overexpressing LdICE1 in Arabidopsis thaliana and showed that in contrast to LdXERICO, LdICE1 positively regulated dormancy release. Finally, qRT–PCR confirmed that LdXERICO was epistatic to LdICE1 for dormancy release. We propose that LdXERICO, an essential gene in dormancy regulation through the ABA-related pathway, has a complex regulatory network involving temperature signals. This study provides a theoretical basis for further exploring the mechanism of bulb dormancy release.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.