This study addresses a gap in understanding the mechanisms linking parent-infant contact to biobehavioral responses. SSC activated OT release and decreased infant SC levels. Facilitation of SSC may be an effective intervention to reduce parent and infant stress in the NICU. Findings advance the exploration of OT as a potential moderator for improving responsiveness and synchrony in parent-infant interactions.
Cumulative evidence shows a linkage between gut microbiota pattern and depression through the brain-gut microbiome axis. The aim of this systematic review was to identify the alterations of the gut microbiota patterns in people with depression compared to healthy controls. A comprehensive literature search of human studies, published between January 2000 and June 2019, was reviewed. The key words included gastrointestinal microbiome, gut microbiome, microbiota, depression, depressive symptoms, and depressive disorder. The systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Nine articles met the eligibility criteria. Disparities in a-diversity and b-diversity of the microbiota existed in people with depression compared to healthy controls. At the phylum level, there were inconsistencies in the abundance of Firmicutes, Bacteroidetes, and Proteobacteria. However, high abundance in Actinobacteria and Fusobacteria phyla were observed in people with depression. On the family level, high abundance of Actinomycineae
Gut microbiota plays a key role in multiple aspects of human health and disease, particularly in early life. Distortions of the gut microbiota have been found to correlate with fatal diseases in preterm infants, however, developmental patterns of gut microbiome and factors affecting the colonization progress in preterm infants remain unclear. The purpose of this prospective longitudinal study was to explore day-to-day gut microbiome patterns in preterm infants during their first 30 days of life in the neonatal intensive care unit (NICU) and investigate potential factors related to the development of the infant gut microbiome. A total of 378 stool samples were collected daily from 29 stable/healthy preterm infants. DNA extracted from stool was used to sequence the V4 region of the 16S rRNA gene region for community analysis. Operational taxonomic units (OTUs) and α-diversity of the community were determined using QIIME software. Proteobacteria was the most abundant phylum, accounting for 54.3% of the total reads. Result showed shift patterns of increasing Clostridium and Bacteroides, and decreasing Staphylococcus and Haemophilus over time during early life. Alpha-diversity significantly increased daily in preterm infants after birth and linear mixed-effects models showed that postnatal days, feeding types and gender were associated with the α-diversity, p< 0.05–0.01. Male infants were found to begin with a low α-diversity, whereas females tended to have a higher diversity shortly after birth. Female infants were more likely to have higher abundance of Clostridiates, and lower abundance of Enterobacteriales than males during early life. Infants fed mother’s own breastmilk (MBM) had a higher diversity of gut microbiome and significantly higher abundance in Clostridiales and Lactobacillales than infants fed non-MBM. Permanova also showed that bacterial compositions were different between males and females and between MBM and non-MBM feeding types. In conclusion, infant postnatal age, gender and feeding type significantly contribute to the dynamic development of the gut microbiome in preterm infants.
Background Premature infants have a high risk for dysbiosis of the gut microbiome. Mother’s own breastmilk (MOM) has been found to favorably alter gut microbiome composition in infants born at term. Evidence about the influence of feeding type on gut microbial colonization of preterm infants is limited. Objective The purpose of this study was to explore the effect of feeding types on gut microbial colonization of preterm infants in the neonatal intensive care unit (NICU). Methods Thirty-three stable preterm infants were recruited at birth and followed-up for the first 30 days of life. Daily feeding information was used to classify infants into six groups (mother’s own milk [MOM], human donated milk [HDM], formula, MOM+HDM, MOM+Formula, and HDM+forumla) during postnatal days 0–10, 11–20, and 21–30 after birth. Stool samples were collected daily. DNA extracted from stool was used to sequence the 16S rRNA gene. Exploratory data analysis was conducted with a focus on temporal changes of microbial patterns and diversities among infants from different feeding cohorts. Prediction of gut microbial diversity from feeding type was estimated using linear mixed models. Results Preterm infants fed MOM (at least 70% of the total diet) had highest abundance of Clostridiales, Lactobacillales, and Bacillales compared to infants in other feeding groups, whereas infants fed primarily human donor milk or formula had a high abundance of Enterobacteriales compared to infants fed MOM. After controlling for gender, postnatal age, weight and birth gestational age, the diversity of gut microbiome increased over time and was constantly higher in infants fed MOM relative to infants with other feeding types (p < .01). Discussion Mother’s own breast milk benefits gut microbiome development of preterm infants, including balanced microbial community pattern and increased microbial diversity in early life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.