Maize is an important crop with a high level of genome diversity and heterosis. The genome sequence of a typical female line, B73, was previously released. Here, we report a de novo genome assembly of a corresponding male representative line, Mo17. More than 96.4% of the 2,183 Mb assembled genome can be accounted for by 362 scaffolds in ten pseudochromosomes with 38,620 annotated protein-coding genes. Comparative analysis revealed large gene-order and gene structural variations: approximately 10% of the annotated genes were mutually nonsyntenic, and more than 20% of the predicted genes had either large-effect mutations or large structural variations, which might cause considerable protein divergence between the two inbred lines. Our study provides a high-quality reference-genome sequence of an important maize germplasm, and the intraspecific gene order and gene structural variations identified should have implications for heterosis and genome evolution.
Genetic imprinting is a specific epigenetic phenomenon in which a subset of genes is expressed depending on their parentof-origin. Two types of chromatin modifications, DNA methylation and histone modification, are generally believed to be involved in the regulation of imprinting. However, the genome-wide correlation between allele-specific chromatin modifications and imprinted gene expression in maize remains elusive. Here we report genome-wide high resolution allelespecific maps of DNA methylation and histone H3 lysine 27 trimethylation (H3K27me3) in maize endosperm. For DNA methylation, thousands of parent-of-origin dependent differentially methylated regions (pDMRs) were identified. All pDMRs were uniformly paternally hypermethylated and maternally hypomethylated. We also identified 1131 allele-specific H3K27me3 peaks that are preferentially present in the maternal alleles. Maternally expressed imprinted genes (MEGs) and paternally expressed imprinted genes (PEGs) had different patterns of allele-specific DNA methylation and H3K27me3. Allele-specific expression of MEGs was not directly related to allele-specific H3K27me3, and only a subset of MEGs was associated with maternal-specific DNA demethylation, which was primarily located in the upstream and 59 portion of gene body regions. In contrast, allele-specific expression of a majority of PEGs was related to maternal-specific H3K27me3, with a subgroup of PEGs also associated with maternal-specific DNA demethylation. Both pDMRs and maternal H3K27me3 peaks associated with PEGs are enriched in gene body regions. Our results indicate highly complex patterns of regulation on genetic imprinting in maize endosperm.
BackgroundUnderstanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations.ResultsA set of 708 F2 progeny derived from inbreds Chang7-2 and 787 were generated and genotyped by whole genome low-coverage genotyping-by-sequencing method (average 0.04×). A genetic map containing 6,533 bin-markers was constructed based on the parental SNPs and a sliding-window method, spanning a total genetic distance of 1,396 cM. The high quality and accuracy of this map was validated by the identification of two well-studied genes, r1, a qualitative trait locus for color of silk (chromosome 10) and ba1 for tassel branch number (chromosome 3). Three traits of tassel and ear architecture were evaluated in this population, a total of 10 QTL were detected using a permutation-based-significance threshold, seven of which overlapped with reported QTL. Three genes (GRMZM2G316366, GRMZM2G492156 and GRMZM5G805008) encoding MADS-box domain proteins and a BTB/POZ domain protein were located in the small intervals of qTBN5 and qTBN7 (~800 Kb and 1.6 Mb in length, respectively) and may be involved in patterning of tassel architecture. The small physical intervals of most QTL indicate high-resolution mapping is obtainable with this method.ConclusionsWe constructed an ultra-high-dentisy linkage map for the large early generation population in maize. Our study provides an efficient approach for fast detection of quantitative loci responsible for complex trait variation with high accuracy, thus helping to dissect the underlying molecular basis of phenotypic variation and accelerate improvement of crop breeding in a cost-effective fashion.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-433) contains supplementary material, which is available to authorized users.
Long-range chromatin interactions are important for transcriptional regulation of genes, many of which are related to complex agronomics traits. However, the pattern of three-dimensional chromatin interactions remains unclear in plants. Here we report the generation of chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) data and the construction of extensive H3K4me3- and H3K27ac-centered chromatin interaction maps in maize. Results show that the interacting patterns between proximal and distal regulatory regions of genes are highly complex and dynamic. Genes with chromatin interactions have higher expression levels than those without interactions. Genes with proximal-proximal interactions prefer to be transcriptionally coordinated. Tissue-specific proximal–distal interactions are associated with tissue-specific expression of genes. Interactions between proximal and distal regulatory regions further interweave into organized network communities that are enriched in specific biological functions. The high-resolution chromatin interaction maps will help to understand the transcription regulation of genes associated with complex agronomic traits of maize.
Supercapacitors with fast charge/discharge rate and long cycling stability (>50 000 cycles) are attractive for energy storage and mobile power supply. In this paper, a facile strategy is developed to fabricate an Fe2O3/FeS‐decorated N, S‐codoped hierarchical porous carbon hybrid. Its microstructure and compositions can be readily controlled through adjusting the hydrothermal reaction between waxberry and iron sulfate. The constructed supercapacitors with the as‐prepared carbon materials from this reaction are able to exhibit outstanding capacitive performance with a superfast charge/discharge rate (<1 s), ultralong cycle life (>50 000 cycles, 80 A g−1), ultrahigh volumetric capacitance (1320.4 F cm−3, 0.1 A g−1), and high energy density (100.9 W h kg−1, 221.9 W h L−1). The outstanding performance makes it one of the best biomass‐derived supercapacitors. The superior capacitive behavior is likely to arise from the N and S codoping on the surface/edge/skeleton of the carbon microspheres and nanosheet composites coupled with the fast redox reaction of Fe2O3/FeS. Overall, this research presents a new avenue for developing the next generation of sustainable high‐performance energy storage device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.