The International Council on Harmonization (ICH) S7B and E14 regulatory guidelines are sensitive but not specific for predicting which drugs are pro-arrhythmic. In response, the Comprehensive In Vitro Proarrhythmia Assay (CiPA) was proposed that integrates multi-ion channel pharmacology data in vitro into a human cardiomyocyte model in silico for proarrhythmia risk assessment. Previously, we reported the model optimization and proarrhythmia metric selection based on CiPA training drugs. In this study, we report the application of the prespecified model and metric to independent CiPA validation drugs. Over two validation datasets, the CiPA model performance meets all pre-specified measures for ranking and classifying validation drugs, and outperforms alternatives, despite some in vitro data differences between the two datasets due to different experimental conditions and quality control procedures. This suggests that the current CiPA model/metric may be fit for regulatory use, and standardization of experimental protocols and quality control criteria could increase the model prediction accuracy even further.
In response to a surge of deaths from synthetic opioid overdoses, there have been increased efforts to distribute naloxone products in community settings. Prior research has assessed the effectiveness of naloxone in the hospital setting; however, it is challenging to assess naloxone dosing regimens in the community/first‐responder setting, including reversal of respiratory depression effects of fentanyl and its derivatives (fentanyls). Here, we describe the development and validation of a mechanistic model that combines opioid mu receptor binding kinetics, opioid agonist and antagonist pharmacokinetics, and human respiratory and circulatory physiology, to evaluate naloxone dosing to reverse respiratory depression. Validation supports our model, which can quantitatively predict displacement of opioids by naloxone from opioid mu receptors in vitro, hypoxia‐induced cardiac arrest in vivo, and opioid‐induced respiratory depression in humans from different fentanyls. After validation, overdose simulations were performed with fentanyl and carfentanil followed by administration of different intramuscular naloxone products. Carfentanil induced more cardiac arrest events and was more difficult to reverse than fentanyl. Opioid receptor binding data indicated that carfentanil has substantially slower dissociation kinetics from the opioid receptor compared with nine other fentanyls tested, which likely contributes to the difficulty in reversing carfentanil. Administration of the same dose of naloxone intramuscularly from two different naloxone products with different formulations resulted in differences in the number of virtual patients experiencing cardiac arrest. This work provides a robust framework to evaluate dosing regimens of opioid receptor antagonists to reverse opioid‐induced respiratory depression, including those caused by newly emerging synthetic opioids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.