A novel chiral surfactant-type catalyst is developed. Micelles formed in water by association of the catalysts themselves, and this was confirmed by TEM analyses. Asymmetric transfer hydrogenation of aliphatic ketones catalyzed by the chiral metallomicellar catalyst gave good to excellent conversions and remarkable stereoselectivities (up to 95% ee). Synergistic effects between the metal-catalyzed center and the hydrophobic microenvironment of the core in the metallomicelle led to high enantioselectivities.
The interaction of an ultraintense circularly polarized laser pulse and a solid target is studied by one-dimensional particle-in-cell simulations. Ions at the front of the target are reflected by a moving quasisteady electrostatic field and obtain a relativistic velocity. At a laser intensity of 1022W∕cm2, almost half of the laser energy is transferred to ions and GeV ions are obtained. Effects of laser polarization state and target thickness on the laser energy conversion are investigated. It is found that a circularly polarized laser pulse can accelerate ions more efficiently than a linearly polarized laser pulse at the same laser and target parameters. A monoenergetic ion bunch is obtained for the ultrathin target, which is accelerated as a single entity.
Accumulating evidence implies that N6-methyladenosine (m6A) methylation participated in the tumorigenesis of gastric cancer (GC). Here we synthetically analyzing the prognostic value and expression profile of seven m6A methylation-relevant genes through silico analysis of sequencing data downloaded from The Cancer Genome Atlas, Kaplan-Meier plotter, and Gene Expression Omnibus database. We explored the methyltransferase-like 3 (METTL3) expression in GC cell line and tumor tissues by reverse transcription quantitative polymerase chain reaction and western blot analysis.The m6A methylation status of total RNA was measured by m6A RNA methylation quantification kit. Small interfering RNA was used to establish METTL3 knockdown cell lines. We also measure the proliferation and migration capability GC cell. Furthermore, we detect the epithelial cell mesenchymal transition marker and m6A methylation level after METTL3 knock down. Our result revealed that METTL3 was significantly increased in GC tissues compared with control in big crowd data sets. Survival analysis showed that METTL3 serve as a poor prognostic factor for GC patients. The expression level of METTL3 gradually increased with the progress of tumor stage and grade. GFI1 is an important transcription factor associated with METTL3. We verified the up-trend of METTL3 in messenger RNA and protein expression and observed a significant increase in the m6A methylation status of total RNA in the GC cells and tissues. METTL3 knockdown inhibited total RNA m6A methylation level, as well as cell proliferation and migration capacity. Moreover, METTL3 knockdown decreased α-smooth muscle actin.Taken together, our finding revealed that m6A methylation writer METTL3 serve as an oncogene in tumorigenesis of GC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.