A model-driven deep reinforcement learning heuristic algorithm for resource allocation in ultra-dense cellular networks. IEEE Transactions on Vehicular Technology, 69(1), pp. 983-997.There may be differences between this version and the published version. You are advised to consult the publisher's version if you wish to cite from it.Abstract-Resource allocation in ultra dense network (UDN) is an multi-objective optimization problem since it has to consider the tradeoff among spectrum efficiency (SE), energy efficiency (EE) and fairness. The existing methods can not effectively solve this NP-hard nonconvex problem, especially in the presence of limited channel state information (CSI). In this paper, we investigate a novel model-driven deep reinforcement learning assisted resource allocation method. We first design a novel deep neural network (DNN)-based optimization framework consisting of a series of Alternating Direction Method of Multipliers (ADMM) iterative procedures, which makes the CSI as the learned weights. Then a novel channel information absent Q-learning resource allocation (CIAQ) algorithm is proposed to train the DNN-based optimization framework without massive labeling data, where the SE, the EE, and the fairness can be jointly optimized by adjusting discount factor. Our simulation results show that, the proposed CIAQ with rapid convergence speed not only well characterizes the extent of optimization objective with partial CSI, but also significantly outperforms the current random initialization method of neural network and the other existing resource allocation algorithms in term of the tradeoff among the SE, EE and fairness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.