Super‐resolution fluorescence microscopy has enabled important breakthroughs in biology and materials science. Implementations such as single‐molecule localization microscopy (SMLM) and minimal emission fluxes (MINFLUX) microscopy in the localization mode exploit fluorophores that blink, i.e., switch on and off, stochastically. Here, we introduce nanographenes, namely large polycyclic aromatic hydrocarbons that can also be regarded as atomically precise graphene quantum dots, as a new class of fluorophores for super‐resolution fluorescence microscopy. Nanographenes exhibit outstanding photophysical properties: intrinsic blinking even in air, excellent fluorescence recovery, and stability over several months. As a proof of concept for super‐resolution applications, we use nanographenes in SMLM to generate 3D super‐resolution images of silica nanocracks. Our findings open the door for the widespread application of nanographenes in super‐resolution fluorescence microscopy.
We report on an environmentally stable self-starting monolithic (i.e. without any free-space coupling) all-polarization-maintaining (PM) femtosecond Yb-fiber laser, stabilized against Q-switching by a narrow-band fiber Bragg grating and modelocked using a semiconductor saturable absorber mirror. The laser output is compressed in a spliced-on hollow-core PM photonic crystal fiber, thus providing direct end-of-the-fiber delivery of pulses of around 370 fs duration and 4 nJ energy with high mode quality. Tuning the pump power of the end amplifier of the laser allows for the control of output pulse bandwidth and duration. Our experimental results are in good agreement with the theoretical predictions.
Dibenzo[hi,st]ovalene (DBOV)
has excellent photophysical properties, including strong fluorescence
and high ambient stability. Moreover, the optical blinking properties
of DBOV have enabled optical super-resolution single-molecule localization
microscopy with an imaging resolution beyond the diffraction limit.
Various organic and inorganic fluorescent probes have been developed
for super-resolution imaging, but those sensitive to pH and/or metal
ions have remained elusive. Here, we report a diaza-derivative of
DBOV (N-DBOV), synthesized in eight steps with a total yield of 15%.
Nitrogen (N)-bearing zigzag edges were formed through oxidative cyclization
of amino groups in the last step. UV–vis and fluorescence spectroscopy
of N-DBOV revealed its promising optical properties comparable to
those of the parent DBOV, while cyclic voltammetry and density functional
theory calculations highlighted its lower orbital energy levels and
potential n-type semiconductor character. Notably,
in contrast to that of the parent DBOV, the strong luminescence of
N-DBOV is dependent on pH and the presence of heavy metal ions, indicating
the potential of N-DBOV in sensing applications. N-DBOV also exhibited
pH-responsive blinking, which enables pH-sensitive super-resolution
imaging. Therefore, N-DBOV appears to be a highly promising candidate
for fluorescence sensing in biology and environmental analytics.
An all-fiber femtosecond source of spectrally isolated Cherenkov radiation is reported, to the best of our knowledge, for the first time. Using a monolithic, self-starting femtosecond Yb-doped fiber laser as the pump source and the combination of photonic crystal fibers as the wave-conversion medium, we demonstrate stable and tunable Cherenkov radiation at visible wavelengths 580–630 nm, with pulse duration of sub-160-fs, and the 3 dB spectral bandwidth not exceeding 36 nm. Such an all-fiber Cherenkov radiation source is promising for practical applications in biophotonics such as bioimaging and microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.