Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78 , associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
De novo mutations (DNMs) are important in autism spectrum disorder (ASD), but so far analyses have mainly been on the ~1.5% of the genome encoding genes. Here, we performed whole-genome sequencing (WGS) of 200 ASD parent–child trios and characterised germline and somatic DNMs. We confirmed that the majority of germline DNMs (75.6%) originated from the father, and these increased significantly with paternal age only (P=4.2×10−10). However, when clustered DNMs (those within 20 kb) were found in ASD, not only did they mostly originate from the mother (P=7.7×10−13), but they could also be found adjacent to de novo copy number variations where the mutation rate was significantly elevated (P=2.4×10−24). By comparing with DNMs detected in controls, we found a significant enrichment of predicted damaging DNMs in ASD cases (P=8.0×10−9; odds ratio=1.84), of which 15.6% (P=4.3×10−3) and 22.5% (P=7.0×10−5) were non-coding or genic non-coding, respectively. The non-coding elements most enriched for DNM were untranslated regions of genes, regulatory sequences involved in exon-skipping and DNase I hypersensitive regions. Using microarrays and a novel outlier detection test, we also found aberrant methylation profiles in 2/185 (1.1%) of ASD cases. These same individuals carried independently identified DNMs in the ASD-risk and epigenetic genes DNMT3A and ADNP. Our data begins to characterize different genome-wide DNMs, and highlight the contribution of non-coding variants, to the aetiology of ASD.
Only two genome-wide significant loci associated with longevity have been identified so far, probably because of insufficient sample sizes of centenarians, whose genomes may harbor genetic variants associated with health and longevity. Here we report a genome-wide association study (GWAS) of Han Chinese with a sample size 2.7 times the largest previously published GWAS on centenarians. We identified 11 independent loci associated with longevity replicated in Southern-Northern regions of China, including two novel loci (rs2069837-IL6; rs2440012-ANKRD20A9P) with genome-wide significance and the rest with suggestive significance (P < 3.65 × 10−5). Eight independent SNPs overlapped across Han Chinese, European and U.S. populations, and APOE and 5q33.3 were replicated as longevity loci. Integrated analysis indicates four pathways (starch, sucrose and xenobiotic metabolism; immune response and inflammation; MAPK; calcium signaling) highly associated with longevity (P ≤ 0.006) in Han Chinese. The association with longevity of three of these four pathways (MAPK; immunity; calcium signaling) is supported by findings in other human cohorts. Our novel finding on the association of starch, sucrose and xenobiotic metabolism pathway with longevity is consistent with the previous results from Drosophilia. This study suggests protective mechanisms including immunity and nutrient metabolism and their interactions with environmental stress play key roles in human longevity.
The gut microbiome has been implicated in a variety of physiological states, but controversy over causality remains unresolved. Here, we performed bidirectional Mendelian randomization (MR) analyses on 3,432 Chinese individuals with whole genome, whole metagenome, anthropometric, and blood metabolic trait data. We identified 58 causal relationships between the gut microbiome and blood metabolites, and replicated 43 of them. Increased relative abundances of fecal Oscillibacter and Alistipes were causally linked to decreased triglyceride concentration. Conversely, blood metabolites such as glutamic acid appeared to decrease fecal Oxalobacter, and members of Proteobacteria were influenced by metabolites such as 5-methyltetrahydrofolic acid, alanine, glutamate, and selenium. Two-sample MR with data from Biobank Japan partly corroborated results with triglyceride and with uric acid, and also provided causal support for published fecal bacterial markers for cancer and cardiovascular diseases. This study illustrates the value of human genetic information to help prioritize gut microbial features for mechanistic and clinical studies.Metagenome-wide association studies (MWAS) using human stool samples, as well as animal models, especially germ-free mice, have pointed to a potential role of the gut microbiome in diseases such as cardiometabolic, autoimmune, neuropsychiatric disorders and cancer, with mechanistic investigations for diseases such as obesity, colorectal cancer and schizophrenia [1][2][3][4] . Twin-based heritability estimation and more recent metagenome-genome-wide association studies (M-GWAS) have questioned the traditional view of the gut microbiota as a purely environmental factor 5-9 , although the extent of the genetic influence remains controversial 7,10 . Yet, all these published cohorts, except for human sequences in the metagenomic data of HMP (Human Microbiome Project), utilized array data for human genetics, and most of them had 16S rRNA gene amplicon sequencing for the fecal microbiota [5][6][7][8][9] .As the gut microbiome is considered to be highly dynamic, causality has been an unresolved issue in the field. Mendelian randomization (MR) 11 offers an opportunity to distinguish between causal and non-causal effects from cross-sectional data, without animal studies or randomized controlled trials. An early study used MR to look at the gut microbiota and ischemic heart disease 12 . Recently, a study used MR to confirm that increased relative abundance of bacteria producing the fecal volatile short-chain fatty acid (SCFA) butyrate was causally linked to improved insulin response to oral glucose challenge; in contrast, another fecal SCFA, propionate, was causally related to an increased risk of T2D 13 . However, both studies used genotype data, and it was not clear to what extent the genetic factors explained the microbial feature of interest.In this study, we present a large-scale M-GWAS using whole genome and fecal microbiome, followed by bidirectional MR for the fecal microbiome and anthropometric...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.